ﻻ يوجد ملخص باللغة العربية
Given the massive market of advertising and the sharply increasing online multimedia content (such as videos), it is now fashionable to promote advertisements (ads) together with the multimedia content. It is exhausted to find relevant ads to match the provided content manually, and hence, some automatic advertising techniques are developed. Since ads are usually hard to understand only according to its visual appearance due to the contained visual metaphor, some other modalities, such as the contained texts, should be exploited for understanding. To further improve user experience, it is necessary to understand both the topic and sentiment of the ads. This motivates us to develop a novel deep multimodal multitask framework to integrate multiple modalities to achieve effective topic and sentiment prediction simultaneously for ads understanding. In particular, our model first extracts multimodal information from ads and learn high-level and comparable representations. The visual metaphor of the ad is decoded in an unsupervised manner. The obtained representations are then fed into the proposed hierarchical multimodal attention modules to learn task-specific representations for final prediction. A multitask loss function is also designed to train both the topic and sentiment prediction models jointly in an end-to-end manner. We conduct extensive experiments on the latest and large advertisement dataset and achieve state-of-the-art performance for both prediction tasks. The obtained results could be utilized as a benchmark for ads understanding.
We propose UniT, a Unified Transformer model to simultaneously learn the most prominent tasks across different domains, ranging from object detection to natural language understanding and multimodal reasoning. Based on the transformer encoder-decoder
We present a multi-task learning formulation for Deep Gaussian processes (DGPs), through non-linear mixtures of latent processes. The latent space is composed of private processes that capture within-task information and shared processes that capture
Both image-caption pairs and translation pairs provide the means to learn deep representations of and connections between languages. We use both types of pairs in MURAL (MUltimodal, MUltitask Representations Across Languages), a dual encoder that sol
Deep learning models require extensive architecture design exploration and hyperparameter optimization to perform well on a given task. The exploration of the model design space is often made by a human expert, and optimized using a combination of gr
This paper describes an open-source Python framework for handling datasets for music processing tasks, built with the aim of improving the reproducibility of research projects in music computing and assessing the generalization abilities of machine l