ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral effective theory of diquarks and the U_A(1) anomaly

144   0   0.0 ( 0 )
 نشر من قبل Makoto Oka
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The diquark is a strongly correlated quark pair that plays an important role in hadrons and hadronic matter. In order to treat the diquak as a building block of hadrons, we formulate an effective theory of diquark fields with $SU(3)_R times SU(3)_L$ chiral symmetry. We concentrate on the scalar ($0^+$) and pseudoscalar ($0^-$) diquarks and construct a linear-sigma-model Lagrangian. It is found that the effective Lagrangian contains a new type of chirally symmetric meson-diquark-diquark coupling that breaks axial $U_A(1)$ symmetry. We discuss consequences of the $U_A(1)$ anomaly term to the diquark masses as well as to the singly heavy baryon spectrum, which is directly related to the diquark spectrum. We find an inverse mass ordering between strange and nonstrange diquarks. The parameters of the effective theory can be determined by the help of lattice QCD calculations of diquarks and also from the mass spectrum of the singly heavy baryons. We determine the strength of the $U_A(1)$ anomaly term, which is found to give a significant portion of the diquark masses.



قيم البحث

اقرأ أيضاً

The mass spectra of singly charmed and bottom baryons, $Lambda_{c/b}(1/2^pm,3/2^-)$ and $Xi_{c/b}(1/2^pm,3/2^-)$, are investigated using a nonrelativistic potential model with a heavy quark and a light diquark. The masses of the scalar and pseudoscal ar diquarks are taken from a chiral effective theory. The effect of $U_A(1)$ anomaly induces an inverse hierarchy between the masses of strange and non-strange pseudoscalar diquarks, which leads to a similar inverse mass ordering in $rho$-mode excitations of singly heavy baryons.
418 - Xiang Li , Wei-jie Fu , 2019
The effective restoration of the U_{A}(1) symmetry is revisited by implementing the functional renormalization group approach combining with the 2+1 flavor Polyakov-loop quark-meson model. A temperature-dependent t Hooft term is taken to imitate the restoration of the U_{A}(1) symmetry. Order parameters, meson spectrum and mixing angles, especially the pressure and the entropy density of the system are calculated to explore the effects of different U_{A}(1) symmetry restoration patterns. We show then that the temperature for the restoration of the U_{A}(1) symmetry is much higher than that for the chiral symmetry SU_{A}(3).
We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ t he temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.
We study strong and radiative decays of excited singly heavy baryons (SHBs) using an effective chiral Lagrangian based on the diquark picture proposed in Ref. [1]. The effective Lagrangian contains a $U_A (1)$ anomaly term, which induces an inverse m ass ordering between strange and non-strange SHBs with spin-parity $1/2^-$. We find that the effect of the $U_A (1)$ anomaly combined with flavor-symmetry breaking modifies the Goldberger-Treiman relation for the mass difference between the ground state $Lambda_Q (1/2^+)$ and its chiral partner $Lambda_Q (1/2^-)$, and $Lambda_Q (1/2^-) Lambda_Q (1/2^+) eta$ coupling, which results in suppression of the decay width of $Lambda_Q (1/2^-) to Lambda_Q (1/2^+) eta$. We also investigate the other various decays such as $Lambda_Q (1/2^-) to Sigma_Q (1/2^+, , 3/2^+) pi pi$, $Lambda_Q (1/2^-) to Sigma_Q (1/2^+) pi$, $Lambda_Q (1/2^-) to Sigma_Q (1/2^+, , 3/2^+) gamma$, and $Lambda_Q (1/2^-) to Lambda_Q (1/2^+) pi^0$ for wide range of mass of $Lambda_Q (1/2^-)$.
We revisit the chiral anomaly in the quantum kinetic theory in the Wigner function formalism under the background field approximation. Our results show that the chiral anomaly is actually from the Dirac sea or the vacuum contribution in the un-normal -ordered Wigner function. We also demonstrate that this contribution modifies the chiral kinetic equation for antiparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا