ﻻ يوجد ملخص باللغة العربية
We report $^{93}$Nb and $^{121}$Sb NMR and $^{57}$Fe M{o}ssbauer studies combined with DFT calculations of Nb$_{1-x}$Ti$_x$FeSb ($0leqslant x leqslant0.3$), one of the most promising thermoelectric systems for applications above 1000 K. These studies provide local information about defects and electronic configurations in these heavily $p$-type materials. The NMR spin-lattice relaxation rate provides a measure of states within the valence band. With increasing $x$, changes of relaxation rate vs carrier concentration for different substitution fractions indicate the importance of resonant levels which do not contribute to charge transport. The local paramagnetic susceptibility is significantly larger than expected based on DFT calculations, which we discuss in terms of an enhancement of the susceptibility due to a Coulomb enhancement mechanism. The M{o}ssbauer spectra of Ti-substituted samples show small departures from a binomial distribution of substituted atoms, while for unsubstituted $p$-type NbFeSb, the amplitude of a M{o}ssbauer satellite peak increases vs temperature, a measure of the $T$-dependent charging of a population of defects residing about 30 meV above the valence band edge, indicative of an impurity band at this location.
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns alon
Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi$_{1-x}$Fe$_x$Sb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0$leq$x$leq$1.0. The influence of Fe on the structural, electronic,
Though Weyl fermions have recently been observed in several materials with broken inversion symmetry, there are very few examples of such systems with broken time reversal symmetry. Various Co$_{2}$-based half-metallic ferromagnetic Heusler compounds
A half-Heusler material FeNb$_{0.8}$Ti$_{0.2}$Sb has been identified as a promising thermoelectric material due to its excellent thermoelectric performance at high temperatures. The origins of the efficient thermoelectric performance are investigated
For disordered Heisenberg systems with small single ion anisotropy, two spin glass transitions below the long range ordered phase transition temperature has been predicted theoretically for compositions close to the percolation threshold. Experimenta