ترغب بنشر مسار تعليمي؟ اضغط هنا

Collinear Orbital Antiferromagnetic Order and Magnetoelectricity in Quasi-2D Itinerant-Electron Paramagnets, Ferromagnets and Antiferromagnets

53   0   0.0 ( 0 )
 نشر من قبل R. Winkler
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a comprehensive theory for magnetoelectricity in magnetically ordered quasi-2D systems whereby in thermal equilibrium an electric field can induce a magnetization $m$ and a magnetic field can induce a polarization. This effect requires that both space-inversion and time-reversal symmetry are broken. Antiferromagnetic (AFM) order plays a central role in this theory. We define a Neel operator $tau$ such that a nonzero expectation value $langle tau rangle$ signals AFM order, in the same way $m$ signals ferromagnetic (FM) order. While $m$ is even under space inversion and odd under time reversal, $tau$ describes a toroidal moment that is odd under both symmetries. Thus $m$ and $langle tau rangle$ quantify complementary aspects of magnetic order in solids. In quasi-2D systems FM order can be attributed to dipolar equilibrium currents that give rise to $m$. In the same way, AFM order arises from quadrupolar currents that generate the moment $langle tau rangle$. The electric-field-induced magnetization can then be attributed to the electric manipulation of the quadrupolar currents. We develop a $k cdot p$ envelope-function theory for AFM diamond structures that allows us to derive explicit expressions for the operator $tau$. Considering FM zincblende and AFM diamond, we derive quantitative expressions for the magnetoelectric responses due to electric and magnetic fields that reveal explicitly the inherent duality of these responses required by thermodynamics. Magnetoelectricity is found to be small in realistic calculations for quasi-2D electron systems. The magnetoelectric response of quasi-2D hole systems turns out to be sizable, however, with moderate electric fields being able to induce a magnetic moment of one Bohr magneton per charge carrier. Our theory provides a broad framework for the manipulation of magnetic order by means of external fields.

قيم البحث

اقرأ أيضاً

81 - J. Kipp , K. Samanta , F. R. Lux 2020
The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and crystal Hall effe cts, the topological Hall effect in non-coplanar antiferromagnets has been a subject of intensive research in the past decades. Here, we uncover a new flavour of the anomalous Hall effect in canted spin systems. Using advanced theoretical tools we demonstrate that upon canting, the anomalous Hall effect acquires a contribution which is sensitive to the sense of imprinted vector chirality among spins. We explore the origins and basic properties of corresponding chiral Hall effect, and closely tie it to the symmetry properties of the system. Our findings suggest that the chiral Hall effect and corresponding chiral magneto-optical effects emerge as novel versatile tools in characterizing an interplay of structure and chirality in complex magnets, as well as in tracking their chiral dynamics and fluctuations.
86 - C. M. Varma 2015
Quasi-two dimensional itinerant fermions in the Anti-Ferro-Magnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with t emperature and a contribution to specific heat or thermopower proportional to $T ln T$. It is shown here that a generic model of itinerant AFM can be canonically transformed such that its critical fluctuations around the AFM-vector $Q$ can be obtained from the fluctuations in the long wave-length limit of a dissipative quantum XY model. The fluctuations of the dissipative quantum XY model in 2D have been evaluated recently and in a large regime of parameters, they are determined, not by renormalized spin-fluctuations but by topological excitations. In this regime, the fluctuations are separable in their spatial and temporal dependence and have a dynamical critical exponent $z =infty.$ The time dependence gives $omega/T$-scaling at criticality. The observed resistivity and entropy then follow directly. Several predictions to test the theory are also given.
While it is often assumed that the orbital transport is short-ranged due to strong crystal field potential and orbital quenching, we show that orbital propagation can be remarkably long-ranged in ferromagnets. In contrast to spin transport, which exh ibits an oscillatory decaying behavior by spin dephasing, the injected orbital angular momentum does not oscillate and decays slowly. This unusual feature is attributed to nearly degenerate states in $mathbf{k}$-space, which form hot-spots for the intrinsic orbital response. We demonstrate this in a bilayer consisting of a nonmagnet and a ferromagnet, where the orbital Hall current is injected from a nonmagnet into a ferromagnet. Interaction of the orbital Hall current with the magnetization in the ferromagnet results in an intrinsic response of the orbital angular momentum which propagates far beyond the spin dephasing length. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital transport in orbitronic device applications.
125 - J. Buenemann , F. Gebhard , T. Ohm 2002
We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.
It is shown that the current-induced torques between a ferromagnetic layer and an antiferromagnetic layer with a compensated interface vanish when the ferromagnet is aligned with an axis of spin-rotation symmetry of the antiferromagnet. For properly chosen geometries this implies that the current induced torque can stabilize the out-of-plane (or hard axis) orientation of the ferromagnetic layer. This current-induced torque relies on phase coherent transport, and we calculate the robustness of this torque to phase breaking scattering. From this it is shown that the torque is not linearly dependent on applied current, but has an absolute maximum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا