ﻻ يوجد ملخص باللغة العربية
Trapped atomic ions embedded in optical cavities are a promising platform to enable long-distance quantum networks and their most far-reaching applications. Here we achieve and analyze photon indistinguishability in a telecom-converted ion-cavity system. First, two-photon interference of cavity photons at their ion-resonant wavelength is observed and found to reach the limits set by spontaneous emission. Second, this limit is shown to be preserved after a two-step frequency conversion replicating a distributed scenario, in which the cavity photons are converted to the telecom C band and then back to the original wavelength. The achieved interference visibility and photon efficiency would allow for the distribution and practical verification of entanglement between ion-qubit registers separated by several tens of kilometers.
We generate indistinguishable photons from a semiconductor diode containing a InAs/GaAs quantum dot. Using an all-electrical technique to populate and control a single-photon emitting state we filter-out dephasing by Stark-shifting the emission energ
Trapped atomic ions are a leading platform for quantum information networks, with long-lived identical qubit memories that can be locally entangled through their Coulomb interaction and remotely entangled through photonic channels. However, performin
In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of cons
The development of scalable sources of non-classical light is fundamental to unlock the technological potential of quantum photonicscite{Kimble:Nat2008}. Among the systems under investigation, semiconductor quantum dots are currently emerging as near
Fiber-based quantum networks require photons at telecommunications wavelengths to interconnect qubits separated by long distances. Trapped ions are leading candidates for quantum networking with high-fidelity two-qubit gates, long coherence times, an