ﻻ يوجد ملخص باللغة العربية
Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks and they are related to the increased EXB/B2 flow caused by the magnetic field rotating to become more perpendicular to the flow direction. (Outside the switchbacks, the magnetic field and solar wind flow were generally radial.) The solar wind flow inside switchbacks was faster than that outside due to the frozen-in ions moving with the magnetic structure at the Alfven speed. This energy gain results from the divergence of the Poynting flux from outside to inside the switchback, which produces a loss of electromagnetic energy on switchback entry and recovery of that energy on exit, with the lost energy appearing in the plasma flow. Switchbacks contain 0.3-10 Hz waves that may result from currents and the Kelvin-Helmholtz instability that occurs at the switchback boundaries. These waves may combine with lower frequency MHD waves to heat the plasma. The radial decreases of the Poynting flux and solar wind speed inside switchbacks are due to a geometrical effect.
One of the discoveries made by Parker Solar Probe during first encounters with the Sun is the ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were called switchbacks as some of t
A variety of kinetic waves develop in the solar wind. The relationship between these waves and larger-scale structures, such as current sheets and ongoing turbulence remain a topic of investigation. Similarly, the instabilities producing ion-acoustic
This work extends recent efforts on the force-free modeling of large flux rope-type structures (magnetic clouds, MCs) to much smaller spatial scales. We first select small flux ropes (SFRs) by eye whose duration is unambiguous and which were observed
During Parker Solar Probes first two orbits there are widespread observations of rapid magnetic field reversals known as switchbacks. These switchbacks are extensively found in the near-Sun solar wind, appear to occur in patches, and have possible li
We use emph{Parker Solar Probe} (emph{PSP}) in-situ measurements to analyze the characteristics of solar wind turbulence during the first solar encounter covering radial distances between $35.7R_odot$ and $41.7R_odot$. In our analysis we isolate so-c