ترغب بنشر مسار تعليمي؟ اضغط هنا

Maxwells demon in a double quantum dot with continuous charge detection

102   0   0.0 ( 0 )
 نشر من قبل Bj\\\"orn Annby-Andersson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwells demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using a feedback scheme. We investigate the electrical work produced by the demon and find a non-Gaussian work distribution. To illustrate the effect of a realistic charge detection scheme, we develop a model taking into account noise as well as a finite delay time, and show that an experimental realization is feasible with present day technology. Depending on the accuracy of the measurement, the system is operated as an implementation of Maxwells demon or a single-electron pump.



قيم البحث

اقرأ أيضاً

130 - H. Dong , D.Z. Xu , C.P. Sun 2010
We study the physical mechanism of Maxwells Demon (MD) helping to do extra work in thermodynamic cycles, by describing measurement of position, insertion of wall and information erasing of MD in a quantum mechanical fashion. The heat engine is exempl ified with one molecule confined in an infinitely deep square potential inserted with a movable solid wall, while the MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. It is discovered that the the MD with quantum coherence or on a lower temperature than that of the heat bath of the particle would enhance the ability of the whole work substance formed by the system plus the MD to do work outside. This observation reveals that the role of the MD essentially is to drive the whole work substance being off equilibrium, or equivalently working with an effective temperature difference. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts the common sense on Szilard heat engine (SHE). The quantum SHEs efficiency is evaluated in detail to prove the validity of second law of thermodynamics.
118 - T. Ferrus , A. Rossi , M. Tanner 2009
As semiconductor device dimensions are reduced to the nanometer scale, effects of high defect density surfaces on the transport properties become important to the extent that the metallic character that prevails in large and highly doped structures i s lost and the use of quantum dots for charge sensing becomes complex. Here we have investigated the mechanism behind the detection of electron motion inside an electrically isolated double quantum dot that is capacitively coupled to a single electron transistor, both fabricated from highly phosphorous doped silicon wafers. Despite, the absence of a direct charge transfer between the detector and the double dot structure, an efficient detection is obtained. In particular, unusually large Coulomb peak shifts in gate voltage are observed. Results are explained in terms of charge rearrangement and the presence of inelastic cotunneling via states at the periphery of the single electron transistor dot.
Coherent two-level systems, or qubits, based on electron spins in GaAs quantum dots are strongly coupled to the nuclear spins of the host lattice via the hyperfine interaction. Realizing nuclear spin control would likely improve electron spin coheren ce and potentially enable the nuclear environment to be harnessed for the long-term storage of quantum information. Toward this goal, we report experimental control of the relaxation of nuclear spin polarization in a gate-defined two-electron GaAs double quantum dot. A cyclic gate-pulse sequence transfers the spin of an electron pair to the host nuclear system, establishing a local nuclear polarization that relaxes on a time scale of seconds. We find nuclear relaxation depends on magnetic field and gate-controlled two-electron exchange, consistent with a model of electron mediated nuclear spin diffusion.
We study the cooling of a mechanical resonator (MR) that is capacitively coupled to a double quantum dot (DQD). The MR is cooled by the dynamical backaction induced by the capacitive coupling between the DQD and the MR. The DQD is excited by a microw ave field and afterwards a tunneling event results in the decay of the excited state of the DQD. An important advantage of this system is that both the energy level splitting and the decay rate of the DQD can be well tuned by varying the gate voltage. We find that the steady average occupancy, below unity, of the MR can be achieved by changing both the decay rate of the excited state and the detuning between the transition frequency of the DQD and the microwave frequency, in analogy to the laser sideband cooling of an atom or trapped ion in atomic physics. Our results show that the cooling of the MR to the ground state is experimentally implementable.
145 - Shi-Hua Ouyang , Chi-Hang Lam , 2009
We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics. The approach based on the occupation-state basis, despite widely used in many previous studies, is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots. In contrast, the calculations using the eigenstate basis are valid for an arbitrary interdot coupling. We show that the master equation in the occupation-state basis includes only the low-order terms with respect to the interdot coupling compared with the more accurate master equation in the eigenstate basis. Using realistic model parameters, we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small. Furthermore, properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا