ﻻ يوجد ملخص باللغة العربية
We prove ultradifferentiable Chevelley restriction theorems for a wide range of ultradifferentiable classes. As a special case we find that isotropic functions, i.e., functions defined on the vector space of real symmetric matrices invariant under the action of the special orthogonal group by conjugation, possess some ultradifferentiable regularity if and only if their restriction to diagonal matrices has the same regularity.
We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor tra
We discuss the concept of inner function in reproducing kernel Hilbert spaces with an orthogonal basis of monomials and examine connections between inner functions and optimal polynomial approximants to $1/f$, where $f$ is a function in the space. We
We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $sigma=(sigma_1,dots,sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $overline{f}
We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $mathfrak g$ of left-invariant vector fields on a Lie group $mathbb G$ and we assume t
We consider discrete Dirac systems as an alternative (to the famous SzegH{o} recurrencies and matrix orthogonal polynomials) approach to the study of the corresponding block Toeplitz matrices. We prove an analog of the Christoffel--Darboux formula an