ﻻ يوجد ملخص باللغة العربية
Noisy labels are an unavoidable consequence of labeling processes and detecting them is an important step towards preventing performance degradations in Convolutional Neural Networks. Discarding noisy labels avoids a harmful memorization, while the associated image content can still be exploited in a semi-supervised learning (SSL) setup. Clean samples are usually identified using the small loss trick, i.e. they exhibit a low loss. However, we show that different noise distributions make the application of this trick less straightforward and propose to continuously relabel all images to reveal a discriminative loss against multiple distributions. SSL is then applied twice, once to improve the clean-noisy detection and again for training the final model. We design an experimental setup based on ImageNet32/64 for better understanding the consequences of representation learning with differing label noise distributions and find that non-uniform out-of-distribution noise better resembles real-world noise and that in most cases intermediate features are not affected by label noise corruption. Experiments in CIFAR-10/100, ImageNet32/64 and WebVision (real-world noise) demonstrate that the proposed label noise Distribution Robust Pseudo-Labeling (DRPL) approach gives substantial improvements over recent state-of-the-art. Code is available at https://git.io/JJ0PV.
Long-tailed learning has attracted much attention recently, with the goal of improving generalisation for tail classes. Most existing works use supervised learning without considering the prevailing noise in the training dataset. To move long-tailed
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them in
Deep learning models usually require a large amount of labeled data to achieve satisfactory performance. In multimedia analysis, domain adaptation studies the problem of cross-domain knowledge transfer from a label rich source domain to a label scarc
Convolutional Neural Networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect suffi
Deep neural network models are robust to a limited amount of label noise, but their ability to memorise noisy labels in high noise rate problems is still an open issue. The most competitive noisy-label learning algorithms rely on a 2-stage process co