ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Label Distribution Learning with Label Ambiguity

94   0   0.0 ( 0 )
 نشر من قبل Bin-Bin Gao
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional Neural Networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains such as apparent age estimation, head pose estimation, multi-label classification and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed DLDL (Deep Label Distribution Learning) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from over-fitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.



قيم البحث

اقرأ أيضاً

Semi-supervised learning is becoming increasingly important because it can combine data carefully labeled by humans with abundant unlabeled data to train deep neural networks. Classic methods on semi-supervised learning that have focused on transduct ive learning have not been fully exploited in the inductive framework followed by modern deep learning. The same holds for the manifold assumption---that similar examples should get the same prediction. In this work, we employ a transductive label propagation method that is based on the manifold assumption to make predictions on the entire dataset and use these predictions to generate pseudo-labels for the unlabeled data and train a deep neural network. At the core of the transductive method lies a nearest neighbor graph of the dataset that we create based on the embeddings of the same network.Therefore our learning process iterates between these two steps. We improve performance on several datasets especially in the few labels regime and show that our work is complementary to current state of the art.
464 - Meng Ye , Yuhong Guo 2018
Zero-shot learning transfers knowledge from seen classes to novel unseen classes to reduce human labor of labelling data for building new classifiers. Much effort on zero-shot learning however has focused on the standard multi-class setting, the more challenging multi-label zero-shot problem has received limited attention. In this paper we propose a transfer-aware embedding projection approach to tackle multi-label zero-shot learning. The approach projects the label embedding vectors into a low-dimensional space to induce better inter-label relationships and explicitly facilitate information transfer from seen labels to unseen labels, while simultaneously learning a max-margin multi-label classifier with the projected label embeddings. Auxiliary information can be conveniently incorporated to guide the label embedding projection to further improve label relation structures for zero-shot knowledge transfer. We conduct experiments for zero-shot multi-label image classification. The results demonstrate the efficacy of the proposed approach.
80 - Ya Wang , Dongliang He , Fu Li 2019
Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is lever aged to boost the performance of multi-label recognition. However, what is the best way for label correlation modeling and how feature learning can be improved with label system awareness are still unclear. In this paper, we propose a label graph superimposing framework to improve the conventional GCN+CNN framework developed for multi-label recognition in the following two aspects. Firstly, we model the label correlations by superimposing label graph built from statistical co-occurrence information into the graph constructed from knowledge priors of labels, and then multi-layer graph convolutions are applied on the final superimposed graph for label embedding abstraction. Secondly, we propose to leverage embedding of the whole label system for better representation learning. In detail, lateral connections between GCN and CNN are added at shallow, middle and deep layers to inject information of label system into backbone CNN for label-awareness in the feature learning process. Extensive experiments are carried out on MS-COCO and Charades datasets, showing that our proposed solution can greatly improve the recognition performance and achieves new state-of-the-art recognition performance.
Recently, as an effective way of learning latent representations, contrastive learning has been increasingly popular and successful in various domains. The success of constrastive learning in single-label classifications motivates us to leverage this learning framework to enhance distinctiveness for better performance in multi-label image classification. In this paper, we show that a direct application of contrastive learning can hardly improve in multi-label cases. Accordingly, we propose a novel framework for multi-label classification with contrastive learning in a fully supervised setting, which learns multiple representations of an image under the context of different labels. This facilities a simple yet intuitive adaption of contrastive learning into our model to boost its performance in multi-label image classification. Extensive experiments on two benchmark datasets show that the proposed framework achieves state-of-the-art performance in the comparison with the advanced methods in multi-label classification.
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where imag es and labels are embedded via two unique deep neural networks, respectively. To capture the relationships between image features and labels, we aim to learn a emph{two-way} deep distance metric over the embedding space from two different views, i.e., the distance between one image and its labels is not only smaller than those distances between the image and its labels nearest neighbors, but also smaller than the distances between the labels and other images corresponding to the labels nearest neighbors. Moreover, a reconstruction module for recovering correct labels is incorporated into the whole framework as a regularization term, such that the label embedding space is more representative. Our model can be trained in an end-to-end manner. Experimental results on publicly available image datasets corroborate the efficacy of our method compared with the state-of-the-arts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا