ﻻ يوجد ملخص باللغة العربية
Context: Polarimetry is a very powerful tool to uncover various properties of astronomical objects that remain otherwise hidden in standard imaging or spectroscopic observations. However, the reliable measurement of the low polarization signal from astronomical sources requires a good control of spurious instrumental polarization induced by the various components of the optical system and the detector. Aims: We perform a detailed multi-wavelength calibration study of the FORS2 instrument at the VLT operating in imaging polarimetric mode (IPOL) to characterize the spatial instrumental polarization that may affect the study of extended sources. Methods: We use imaging polarimetry of a) high signal-to-noise blank fields BVRI observations during full-moon, when the polarization is expected to be constant across the field-of-view and deviations originate from the instrument and b) a crowded star cluster in broad-band RI and narrow-band H{alpha} filters, where individual polarization values of each star across the field can be measured. Results: We find an instrumental polarization pattern that increases radially outwards from the optical axis of the instrument reaching up to 1.4% at the edges, depending on the filter. Our results are well approximated by an elliptical paraboloid down to less than {sim0.05%} accuracy,and {sim0.02%} when using non-analytic fits. We present 2D maps to correct for this spurious instrumental polarization. We also give several tips and tricks to analyze polarimetric measurements of extended sources. Conclusions: FORS2 is a powerful instrument allowing to map the linear polarimetry of extended sources. We present and discuss a methodology to measure the polarization of such sources, and to correct for the spatial polarization induced in the optical system. This methodology could be applied to polarimetric measurements using other dual-beam polarimeters.
We reduced ESOs archival linear spectropolarimetry data (4000-9000AA) of 6 highly polarized and 8 unpolarized standard stars observed between 2010 and 2016, for a total of 70 epochs, with the FOcal Reducer and low dispersion Spectrograph (FORS2) moun
The quasar Main Sequence (MS) appears to be an incredibly powerful tool to organize the diversity in large samples of type-1 quasars but the most important physical parameters governing it are still unclear. Here we investigate the origin of the broa
We describe a method to efficiently obtain two-dimensional velocity fields of distant, faint and small, emission-line galaxies with FORS2 at the VLT. They are examined for kinematic substructure to identify possible interaction processes. Numerical s
EFOSC2 (the European Southern Observatory Faint Object Spectrograph and Camera v2) is one of the workhorse instruments on ESOs New Technology Telescope (NTT), and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasm
We present a pipeline that allows recovering reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the treatment of the instrumental effects already prior to the computation of the Stokes parameters contrary to