ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration of EFOSC2 broadband linear imaging polarimetry

224   0   0.0 ( 0 )
 نشر من قبل Klaas Wiersema
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

EFOSC2 (the European Southern Observatory Faint Object Spectrograph and Camera v2) is one of the workhorse instruments on ESOs New Technology Telescope (NTT), and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction dependent instrumental polarisation. In this document we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty ~0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with EFOSC2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form a EFOSC2 legacy archive with substantial scientific potential.



قيم البحث

اقرأ أيضاً

The NASA/ASI Imaging X-ray Polarimetry Explorer, which will be launched in 2021, will be the first instrument to perform spatially resolved X-ray polarimetry on several astronomical sources in the 2-8 keV energy band. These measurements are made poss ible owing to the use of a gas pixel detector (GPD) at the focus of three X-ray telescopes. The GPD allows simultaneous measurements of the interaction point, energy, arrival time, and polarization angle of detected X-ray photons. The increase in sensitivity, achieved 40 years ago, for imaging and spectroscopy with the Einstein satellite will thus be extended to X-ray polarimetry for the first time. The characteristics of gas multiplication detectors are subject to changes over time. Because the GPD is a novel instrument, it is particularly important to verify its performance and stability during its mission lifetime. For this purpose, the spacecraft hosts a filter and calibration set (FCS), which includes both polarized and unpolarized calibration sources for performing in-flight calibration of the instruments. In this study, we present the design of the flight models of the FCS and the first measurements obtained using silicon drift detectors and CCD cameras, as well as those obtained in thermal vacuum with the flight units of the GPD. We show that the calibration sources successfully assess and verify the functionality of the GPD and validate its scientific results in orbit; this improves our knowledge of the behavior of these detectors in X-ray polarimetry.
In this chapter we present a brief summary of methods, instruments and calibration techniques used in modern astronomical polarimetry in the optical wavelengths. We describe the properties of various polarization devices and detectors used for optica l broadband, imaging and spectropolarimetry, and discuss their advantages and disadvantages. The necessity of a proper calibration of the raw polarization data is emphasized and methods of the determination and subtraction of instrumental polarization are considered. We also present a few examples of high-precision measurements of optical polarization of black hole X-ray binaries and massive binary stars made with our DiPol-2 polarimeter, which allowed us to constrain the sources of optical emission in black hole X-ray binaries and measure orbital parameters of massive stellar binaries.
Context: Polarimetry is a very powerful tool to uncover various properties of astronomical objects that remain otherwise hidden in standard imaging or spectroscopic observations. However, the reliable measurement of the low polarization signal from a stronomical sources requires a good control of spurious instrumental polarization induced by the various components of the optical system and the detector. Aims: We perform a detailed multi-wavelength calibration study of the FORS2 instrument at the VLT operating in imaging polarimetric mode (IPOL) to characterize the spatial instrumental polarization that may affect the study of extended sources. Methods: We use imaging polarimetry of a) high signal-to-noise blank fields BVRI observations during full-moon, when the polarization is expected to be constant across the field-of-view and deviations originate from the instrument and b) a crowded star cluster in broad-band RI and narrow-band H{alpha} filters, where individual polarization values of each star across the field can be measured. Results: We find an instrumental polarization pattern that increases radially outwards from the optical axis of the instrument reaching up to 1.4% at the edges, depending on the filter. Our results are well approximated by an elliptical paraboloid down to less than {sim0.05%} accuracy,and {sim0.02%} when using non-analytic fits. We present 2D maps to correct for this spurious instrumental polarization. We also give several tips and tricks to analyze polarimetric measurements of extended sources. Conclusions: FORS2 is a powerful instrument allowing to map the linear polarimetry of extended sources. We present and discuss a methodology to measure the polarization of such sources, and to correct for the spatial polarization induced in the optical system. This methodology could be applied to polarimetric measurements using other dual-beam polarimeters.
For radio interferometric arrays with a sufficient number of redundant spacings the multiplicity of measurements of the same sky visibility can be used to determine both the antenna gains as well as the true visibilities. Many of the earlier approaches to this problem focused on lineariz
While X-ray Spectroscopy, Timing and Imaging have improved verymuch since 1962, when the first astronomical non-solar source was discovered, especially with the launch of Newton/X-ray Multi-Mirror Mission, Rossi/X-ray Timing Explorer and Chandra/Adva nced X-ray Astrophysics Facility, the progress of X-ray polarimetry has been meager. This is in part due to the lack of sensitive polarization detectors, in part due to the fate of approved missions and in part because the celestial X-ray sources appeared less polarized than expected. Only one positive measurement has been available until now. Indeed the eight Orbiting Solar Observatory measured the polarization of the Crab nebula in the 70s. The advent of techniques of microelectronics allowed for designing a detector based on the photoelectric effect in gas in an energy range where the optics are efficient in focusing X-rays. Herewe describe the Instrument, which is the major contribution of the Italian collaboration to the SmallExplorer mission called IXPE, the Imaging X-ray Polarimetry Explorer, which will be flown in late 2021. The instrument, is composed of three Detector Units, based on this technique, and a Detector Service Unit. Three Mirror Modules provided by Marshall Space Flight Center focus X-rays onto the detectors. In the following we will show the technological choices, their scientific motivation and the results from the calibration of the Instrument. IXPE will perform imaging, timing and energy resolved polarimetry in the 2-8 keV energy band opening this window of X-ray astronomy to tens of celestial sources of almost all classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا