ﻻ يوجد ملخص باللغة العربية
We consider optimal control of the scalar wave equation where the control enters as a coefficient in the principal part. Adding a total variation penalty allows showing existence of optimal controls, which requires continuity results for the coefficient-to-solution mapping for discontinuous coefficients. We additionally consider a so-called multi-bang penalty that promotes controls taking on values pointwise almost everywhere from a specified discrete set. Under additional assumptions on the data, we derive an improved regularity result for the state, leading to optimality conditions that can be interpreted in an appropriate pointwise fashion. The numerical solution makes use of a stabilized finite element method and a nonlinear primal-dual proximal splitting algorithm.
A generic formulation for the optimal control of a single wave-energy converter (WEC) is proposed. The formulation involves hard and soft constraints on the motion of the WEC to promote reduced damage and fatigue to the device during operation. Most
This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The stat
This paper is concerned with the Proportional Integral (PI) regulation control of the left Neu-mann trace of a one-dimensional semilinear wave equation. The control input is selected as the right Neumann trace. The control design goes as follows. Fir
Within the model of social dynamics determined by collective decisions in a stochastic environment (ViSE model), we consider the case of a homogeneous society consisting of classically rational economic agents (or homines economici, or egoists). We p
The problem of controlling and stabilising solutions to the Kuramoto-Sivashinsky equation is studied in this paper. We consider a generalised form of the equation in which the effects of an electric field and dispersion are included. Both the feedbac