ﻻ يوجد ملخص باللغة العربية
In this work, we address the trajectory optimization of a fixed-wing unmanned aerial vehicle (UAV) using free space optical communication (FSOC). Here, we focus on maximizing the flight time of the UAV by considering practical constraints for wireless UAV communication, including limited propulsion energy and required data rates. We find optimized trajectories in various atmospheric environments (e.g., moderate-fog and heavy-fog conditions), while also considering the channel characteristics of FSOC. In addition to maximizing the flight time, we consider the energy efficiency maximization and operation-time minimization problem to find the suboptimal solutions required to meet those constraints. Furthermore, we introduce a low-complexity approach to the proposed framework. In order to address the optimization problem, we conduct a bisection method and sequential programming and introduce a new feasibility check algorithm. Although our design considers suboptimal solutions owing to the nonconvexity of the problems, our simulations indicate that the proposed scheme exhibits a gain of approximately 44.12% in terms of service time when compared to the conventional scheme.
Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, we study energy-efficient UAV communication with a ground terminal via optimizing the UAVs trajectory, a new design
In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which i
This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to
Integrating the unmanned aerial vehicles (UAVs) into the cellular network is envisioned to be a promising technology to significantly enhance the communication performance of both UAVs and existing terrestrial users. In this paper, we first provide a
Thanks to the line-of-sight (LoS) transmission and flexibility, unmanned aerial vehicles (UAVs) effectively improve the throughput of wireless networks. Nevertheless, the LoS links are prone to severe deterioration by complex propagation environments