ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Electron-Electron Interactions with a Quantum Antidot

94   0   0.0 ( 0 )
 نشر من قبل Lee Bassett
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lee C. Bassett




اسأل ChatGPT حول البحث

In the integer quantum Hall (IQH) regime, an antidot provides a finite, controllable `edge of quantum Hall fluid that is an ideal laboratory for investigating the collective dynamics of large numbers of interacting electrons. Transport measurements of single antidots probe the excitation spectra of the antidot edge, and gate-defined antidot devices offer the flexibility to vary both the antidots dimensions and its couplings to extended IQH edge modes which serve as leads. We also use the spin-selectivity of the IQH edge modes to perform spin-resolved transport measurements, from which we can infer the antidot spin-structure. This thesis describes a combination of such transport experiments and related computational models designed to investigate the effects of electron-electron interactions in quantum antidots, with general implications for the physics of spin and charge in IQH systems.

قيم البحث

اقرأ أيضاً

Interactions between electrons can strongly affect the shape and functionality of multi-electron quantum dots. The resulting charge distributions can be localized, as in the case of Wigner molecules, with consequences for the energy spectrum and tunn eling to states outside the dot. The situation is even more complicated for silicon dots, due to the interplay between valley, orbital, and interaction energy scales. Here, we study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field, using a combination of tight-binding and full-configuration-interaction (FCI) methods, and taking into account atomic-scale disorder at the quantum well interface. We model dots based on recent qubit experiments, which straddle the boundary between strongly interacting and weakly interacting systems, and display a rich and diverse range of behaviors. Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet (ST) excitation energy. However, when the valley-orbit interactions caused by interfacial disorder are weak, the ST splitting can approach its noninteracting value, even when the electron-electron interactions are strong and Wigner-molecule behavior is observed. These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit features that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.
We have performed low-temperature transport measurements on a disordered two-dimensional electron system (2DES). Features of the strong localization leading to the quantum Hall effect are observed after the 2DES undergoes a direct insulator-quantum H all transition with increasing the perpendicular magnetic field. However, such a transition does not correspond to the onset of strong localization. The temperature dependences of the Hall resistivity and Hall conductivity reveal the importance of the electron-electron interaction effects to the observed transition in our study.
We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfin e-split sub-ensembles to the resonator. Temperature-independent spin linewidth and relaxation time suggest that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble by resonant pumping of another indicates fast cross-relaxation compared to spin diffusion, with implications on use of sub-ensembles as independent quantum memories.
The combined presence of a Rashba and a Zeeman effect in a ballistic one-dimensional conductor generates a spin pseudogap and the possibility to propagate a beam with well defined spin orientation. Without interactions transmission through a barrier gives a relatively well polarized beam. Using renormalization group arguments, we examine how electron-electron interactions may affect the transmission coefficient and the polarization of the outgoing beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا