ﻻ يوجد ملخص باللغة العربية
We present a multiwavelength analysis of the long duration flare observed on 15 April 2002 (soft X-ray peak time at 03:55 UT, SOL2002-04-15T03:55). This flare occurred on the disk (S15W01) in NOAA 9906 and was observed by a number of space instruments including the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory (SOHO/EIT), the RESIK spectrometer onboard the Coronas-F spacecraft, and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We have performed a complex analysis of these measurements and studied the morphology and physical parameters characterizing the conditions in flaring plasmas. The 195 A SOHO/EIT images have been used to study evolution of flaring loops. Analysis of RHESSI data provided the opportunity for a detailed analysis of hard X-ray emission with 1 keV energy resolution. We have used Geostationary Operational Environmental Satellite (GOES) observations for isothermal interpretation of the X-ray measurements. Temperature diagnostics of the flaring plasma have been carried out by means of a differential emission measure (DEM) analysis based on RESIK X-ray spectra.
We perform a zero-$beta$ magnetohydrodynamic simulation for the C7.7 class flare initiated at 01:18 UT on 2011 June 21 using the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The initial condition for the s
We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on time scale 1-30 s and find different time lags between different wavebands
We report a detailed examination of the red asymmetry of H-alpha emission line seen during the 2001 April 10 solar flare by using a narrowband filtergram. We investigated the temporal evolution and the spatial distribution of the red asymmetry by usi
We report the possible detection of a Li I 6708 AA line enhancement during an unusual long-duration optical flare in the recently discovered, X-ray/EUV selected, chromospherically active binary 2RE J0743+224. The Li I equivalent width (EW) variations
The solar X-ray irradiance is significantly heightened during the course of a solar flare, which can cause radio blackouts due to ionization of the atoms in the ionosphere. As the duration of a solar flare is not related to the size of that flare, it