ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Interaction and Trajectory Prediction for Autonomous Driving using Graph Neural Networks

129   0   0.0 ( 0 )
 نشر من قبل Yiming Gu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we aim to predict the future motion of vehicles in a traffic scene by explicitly modeling their pairwise interactions. Specifically, we propose a graph neural network that jointly predicts the discrete interaction modes and 5-second future trajectories for all agents in the scene. Our model infers an interaction graph whose nodes are agents and whose edges capture the long-term interaction intents among the agents. In order to train the model to recognize known modes of interaction, we introduce an auto-labeling function to generate ground truth interaction labels. Using a large-scale real-world driving dataset, we demonstrate that jointly predicting the trajectories along with the explicit interaction types leads to significantly lower trajectory error than baseline methods. Finally, we show through simulation studies that the learned interaction modes are semantically meaningful.

قيم البحث

اقرأ أيضاً

180 - Defu Cao , Jiachen Li , Hengbo Ma 2021
An effective understanding of the contextual environment and accurate motion forecasting of surrounding agents is crucial for the development of autonomous vehicles and social mobile robots. This task is challenging since the behavior of an autonomou s agent is not only affected by its own intention, but also by the static environment and surrounding dynamically interacting agents. Previous works focused on utilizing the spatial and temporal information in time domain while not sufficiently taking advantage of the cues in frequency domain. To this end, we propose a Spectral Temporal Graph Neural Network (SpecTGNN), which can capture inter-agent correlations and temporal dependency simultaneously in frequency domain in addition to time domain. SpecTGNN operates on both an agent graph with dynamic state information and an environment graph with the features extracted from context images in two streams. The model integrates graph Fourier transform, spectral graph convolution and temporal gated convolution to encode history information and forecast future trajectories. Moreover, we incorporate a multi-head spatio-temporal attention mechanism to mitigate the effect of error propagation in a long time horizon. We demonstrate the performance of SpecTGNN on two public trajectory prediction benchmark datasets, which achieves state-of-the-art performance in terms of prediction accuracy.
It is critical to predict the motion of surrounding vehicles for self-driving planning, especially in a socially compliant and flexible way. However, future prediction is challenging due to the interaction and uncertainty in driving behaviors. We pro pose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting. Our approach is differentiated from the traditional manner of prediction, which is only based on historical information and decoupled with planning. By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets. Moreover, our approach enables a novel pipeline which couples the prediction and planning, by conditioning PiP on multiple candidate trajectories of the ego vehicle, which is highly beneficial for autonomous driving in interactive scenarios.
98 - Ce Ju , Zheng Wang , Cheng Long 2019
Forecasting the motion of surrounding obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for intelligent and autonomous vehicles. Complex scenes always yield great challenges in modeling the patterns of surround ing traffic. For example, one main challenge comes from the intractable interaction effects in a complex traffic system. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter network. Attributed to the multiple traffic data sources, our end-to-end trainable approach technically fuses dynamic and interaction-aware trajectories boosting the prediction performance. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for traffic trajectory prediction.
Predicting the trajectories of surrounding agents is an essential ability for autonomous vehicles navigating through complex traffic scenes. The future trajectories of agents can be inferred using two important cues: the locations and past motion of agents, and the static scene structure. Due to the high variability in scene structure and agent configurations, prior work has employed the attention mechanism, applied separately to the scene and agent configuration to learn the most salient parts of both cues. However, the two cues are tightly linked. The agent configuration can inform what part of the scene is most relevant to prediction. The static scene in turn can help determine the relative influence of agents on each others motion. Moreover, the distribution of future trajectories is multimodal, with modes corresponding to the agents intent. The agents intent also informs what part of the scene and agent configuration is relevant to prediction. We thus propose a novel approach applying multi-head attention by considering a joint representation of the static scene and surrounding agents. We use each attention head to generate a distinct future trajectory to address multimodality of future trajectories. Our model achieves state of the art results on the nuScenes prediction benchmark and generates diverse future trajectories compliant with scene structure and agent configuration.
Motivation: Predicting Drug-Target Interaction (DTI) is a well-studied topic in bioinformatics due to its relevance in the fields of proteomics and pharmaceutical research. Although many machine learning methods have been successfully applied in this task, few of them aim at leveraging the inherent heterogeneous graph structure in the DTI network to address the challenge. For better learning and interpreting the DTI topological structure and the similarity, it is desirable to have methods specifically for predicting interactions from the graph structure. Results: We present an end-to-end framework, DTI-GAT (Drug-Target Interaction prediction with Graph Attention networks) for DTI predictions. DTI-GAT incorporates a deep neural network architecture that operates on graph-structured data with the attention mechanism, which leverages both the interaction patterns and the features of drug and protein sequences. DTI-GAT facilitates the interpretation of the DTI topological structure by assigning different attention weights to each node with the self-attention mechanism. Experimental evaluations show that DTI-GAT outperforms various state-of-the-art systems on the binary DTI prediction problem. Moreover, the independent study results further demonstrate that our model can be generalized better than other conventional methods. Availability: The source code and all datasets are available at https://github.com/Haiyang-W/DTI-GRAPH

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا