ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of the loss-cone instability in spherical systems. II. Dominating Keplerian potential

132   0   0.0 ( 0 )
 نشر من قبل Evgeny Polyachenko
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new so-called `gravitational loss-cone instability in stellar systems has recently been investigated theoretically in the framework of linear perturbation theory and proved to be potentially important in understanding the physical processes in centres of galaxies, star clusters, and the Oort comet cloud. Using N-body simulations, we confirm previous findings and go beyond the linear theory. Unlike the well-known instabilities, the new one shows no notable change in spherical geometry of the cluster, but it significantly accelerates the speed of diffusion of particles in phase space leading to a repopulation of the loss cone and early instability saturation.

قيم البحث

اقرأ أيضاً

63 - David Merritt 2013
Supermassive black holes can capture or disrupt stars that come sufficiently close. This article reviews the dynamical processes by which stars or stellar remnants are placed onto loss-cone orbits and the implications for feeding rates. The capture r ate is well defined for spherical galaxies with nuclear relaxation times that are shorter than the galaxys age. However, even the dense nucleus of the Milky Way may be less than one relaxation time old, and this is certainly the case for more massive galaxies; the capture rate in such galaxies is an initial-value problem with poorly-known initial conditions and the rate can be much higher, or much lower, than the rate in a collisionally relaxed nucleus. In nonspherical (axisymmetric, triaxial) galaxies, torquing of orbits by the mean field can dominate perturbations due to random encounters, leading to much higher capture rates than in the spherical geometry, particularly in (massive) galaxies with long central relaxation times. Relativistic precession plays a crucial role in mediating the capture of compact remnants from regions very near to the black hole, by destroying the orbital correlations that would otherwise dominate the torques. The complex dynamics of relativistic loss cones are not yet well enough understood for accurate estimates of compact-object (EMRI) capture rates to be made.
10,000 simulations of 1000-particle realisations of the same cluster are computed by direct force summation. Over three crossing times the original Poisson noise is amplified more than tenfold by self-gravity. The clusters fundamental dipole mode is strongly excited by Poisson noise, and this mode makes a major contribution to driving diffusion of stars in energy. The diffusive flow through action space is computed for the simulations and compared with the predictions of both local-scattering theory and the Balescu-Lenard (BL) equation. The predictions of local-scattering theory are qualitatively wrong because the latter neglects self-gravity. These results imply that local-scattering theory is of little value. Future work on cluster evolution should employ either N-body simulation or the BL equation. However, significant code development will be required to make use of the BL equation practicable.
We continue to investigate the dynamics of collisionless systems of particles interacting via additive $r^{-alpha}$ interparticle forces. Here we focus on the dependence of the radial-orbit instability on the force exponent $alpha$. By means of direc t $N$-body simulations we study the stability of equilibrium radially anisotropic Osipkov-Merritt spherical models with Hernquist density profile and with $1leqalpha<3$. We determine, as a function of $alpha$, the minimum value for stability of the anisotropy radius $r_{as}$ and of the maximum value of the associated stability indicator $xi_s$. We find that, for decreasing $alpha$, $r_{as}$ decreases and $xi_s$ increases, i.e. longer-range forces are more robust against radial-orbit instability. The isotropic systems are found to be stable for all the explored values of $alpha$. The end products of unstable systems are all markedly triaxial with minor-to-major axial ratio $>0.3$, so they are never flatter than an E7 system.
Origin of hydrodynamical instability and turbulence in the Keplerian accretion disc as well as similar laboratory shear flows, e.g. plane Couette flow, is a long standing puzzle. These flows are linearly stable. Here we explore the evolution of pertu rbation in such flows in the presence of an additional force. Such a force, which is expected to be stochastic in nature hence behaving as noise, could be result of thermal fluctuations (however small be), Brownian ratchet, grain-fluid interactions and feedback from outflows in astrophysical discs etc. We essentially establish the evolution of nonlinear perturbation in the presence of Coriolis and external forces, which is modified Landau equation. We show that even in the linear regime, under suitable forcing and Reynolds number, the otherwise least stable perturbation evolves to a very large saturated amplitude, leading to nonlinearity and plausible turbulence. Hence, forcing essentially leads a linear stable mode to unstable. We further show that nonlinear perturbation diverges at a shorter timescale in the presence of force, leading to a fast transition to turbulence. Interestingly, emergence of nonlinearity depends only on the force but not on the initial amplitude of perturbation, unlike original Landau equation based solution.
Fragmentation of spiral arms can drive the formation of giant clumps and induce intense star formation in disc galaxies. Based on the spiral-arm instability analysis of our Paper I, we present linear perturbation theory of dynamical instability of se lf-gravitating spiral arms of magnetised gas, focusing on the effect of toroidal magnetic fields. Spiral arms can be destabilised by the toroidal fields which cancel Coriolis force, i.e. magneto-Jeans instability. Our analysis can be applied to multi-component systems that consist of gas and stars. To test our analysis, we perform ideal magneto-hydrodynamics simulations of isolated disc galaxies and examine the simulation results. We find that our analysis can characterise dynamical instability leading arms to fragment and form clumps if magnetic fields are nearly toroidal. We propose that dimensionless growth rate of the most unstable perturbation, which is computed from our analysis, can be used to predict fragmentation of spiral arms within an orbital time-scale. Our analysis is applicable as long as magnetic fields are nearly toroidal. Using our analytic model, we estimate a typical mass of clumps forming from spiral-arm fragmentation to be consistent with observed giant clumps $sim10^{7-8}~{rm M_odot}$. Furthermore, we find that, although the magnetic destabilisation can cause low-density spiral arms to fragment, the estimated mass of resultant clumps is almost independent from strength of magnetic fields since marginal instability occurs at long wavelengths which compensate the low densities of magnetically destabilised arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا