ترغب بنشر مسار تعليمي؟ اضغط هنا

Exactly solvable magnet of conformal spins in four dimensions

79   0   0.0 ( 0 )
 نشر من قبل Enrico Olivucci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide the eigenfunctions for a quantum chain of $N$ conformal spins with nearest-neighbor interaction and open boundary conditions in the irreducible representation of $SO(1,5)$ of scaling dimension $Delta = 2 - i lambda$ and spin numbers $ell=dot{ell}=0$. The spectrum of the model is separated into $N$ equal contributions, each dependent on a quantum number $Y_a=[ u_a,n_a]$ which labels a representation of the principal series. The eigenfunctions are orthogonal and we computed the spectral measure by means of a new star-triangle identity. Any portion of a conformal Feynmann diagram with square lattice topology can be represented in terms of separated variables, and we reproduce the all-loop fishnet integrals computed by B. Basso and L. Dixon via bootstrap techniques. We conjecture that the proposed eigenfunctions form a complete set and provide a tool for the direct computation of conformal data in the fishnet limit of the supersymmetric $mathcal{N}=4,$ Yang-Mills theory at finite order in the coupling, by means of a cutting-and-gluing procedure on the square lattice.

قيم البحث

اقرأ أيضاً

In this paper we study a wide class of planar single-trace four point correlators in the chiral conformal field theory ($chi$CFT$_4$) arising as a double scaling limit of the $gamma$-deformed $mathcal{N}=4$ SYM theory. In the planar (tHooft) limit, e ach of such correlators is described by a single Feynman integral having the bulk topology of a square lattice fishnet and/or of an honeycomb lattice of Yukawa vertices. The computation of this class of Feynmann integrals at any loop is achieved by means of an exactly-solvable spin chain magnet with $SO(1,5)$ symmetry. In this paper we explain in detail the solution of the magnet model as presented in our recent letter and we obtain a general formula for the representation of the Feynman integrals over the spectrum of the separated variables of the magnet, for any number of scalar and fermionic fields in the corresponding correlator. For the particular choice of scalar fields only, our formula reproduces the conjecture of B. Basso and L. Dixon for the fishnet integrals.
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a `partially massless response. The on-shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair.
We formulate off-shell N=1 superconformal higher spin multiplets in four spacetime dimensions and briefly discuss their coupling to conformal supergravity. As an example, we explicitly work out the coupling of the superconformal gravitino multiplet t o conformal supergravity. The corresponding action is super-Weyl invariant for arbitrary supergravity backgrounds. However, it is gauge invariant only if the supersymmetric Bach tensor vanishes. This is similar to linearised conformal supergravity in curved background.
We study the implications of scale invariance in four-dimensional quantum field theories. Imposing unitarity, we find that infinitely many matrix elements vanish in a suitable kinematical configuration. This vanishing is a nontrivial necessary condit ion for conformality. We provide an argument why this is expected to be a sufficient condition as well, thereby linking scale and conformal invariance in unitary theories. We also discuss possible exceptions to our argument.
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: $V=-W^2+iW_x$. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified b y equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا