ﻻ يوجد ملخص باللغة العربية
We study the implications of scale invariance in four-dimensional quantum field theories. Imposing unitarity, we find that infinitely many matrix elements vanish in a suitable kinematical configuration. This vanishing is a nontrivial necessary condition for conformality. We provide an argument why this is expected to be a sufficient condition as well, thereby linking scale and conformal invariance in unitary theories. We also discuss possible exceptions to our argument.
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large
There exists a certain argument that in even dimensions, scale invariant quantum field theories are conformal invariant. We may try to extend the argument in $2n + epsilon$ dimensions, but the naive extension has a small loophole, which indeed shows
We study quantum gravity in $2+epsilon$ dimensions in such a way to preserve the volume preserving diffeomorphism invariance. In such a formulation, we prove the following trinity: the general covariance, the conformal invariance and the renormalizat
We provide the eigenfunctions for a quantum chain of $N$ conformal spins with nearest-neighbor interaction and open boundary conditions in the irreducible representation of $SO(1,5)$ of scaling dimension $Delta = 2 - i lambda$ and spin numbers $ell=d
Massless conformal scalar field in d=4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2,2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and i