ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of temperature and doping dependence of nematic susceptibility near a putative nematic quantum critical point

84   0   0.0 ( 0 )
 نشر من قبل Johanna Palmstrom
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong electronic nematic fluctuations have been discovered near optimal doping for several families of Fe-based superconductors, motivating the search for a possible link between these fluctuations, nematic quantum criticality, and high temperature superconductivity. Here we probe a key prediction of quantum criticality, namely power law dependence of the associated nematic susceptibility as a function of composition and temperature approaching the compositionally-tuned putative quantum critical point. To probe the bare quantum critical point requires suppression of the superconducting state, which we achieve by using large magnetic fields, up to 45 T, while performing elastoresistivity measurements to follow the nematic susceptibility. We performed these measurements for the prototypical electron-doped pnictide, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, over a dense comb of dopings. We find that close to the putative quantum critical point, the nematic susceptibility appears to obey power law behavior over almost a decade of variation in composition, consistent with basic notions of nematic quantum criticality. Paradoxically, however, we also find that the temperature dependence for compositions close to the critical value cannot be described by a single power law. This is surprising as power law scaling in both doping and temperature is expected close to a quantum critical point.



قيم البحث

اقرأ أيضاً

Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting $T_c$ enclosing the nematic quantum critical point. For temperatures above $T_c$, we see strikingly non-Fermi liquid behavior, including a nodal - anti nodal dichotomy reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low frequency optical conductivity, resulting in behavior consistent with bad metal phenomenology.
192 - K. Ishida , S. Hosoi , Y. Teramoto 2019
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuat ions. In these systems, superconductivity is often found near a magnetic quantum critical point (QCP) where a magnetic phase vanishes in the zero-temperature limit. Moreover, the maximum of superconducting transition temperature Tc frequently locates near the magnetic QCP, suggesting that the proliferation of critical spin fluctuations emanating from the QCP plays an important role in Cooper pairing. In cuprate superconductors, however, the superconducting dome is usually separated from the antiferromagnetic phase and Tc attains its maximum value near the verge of enigmatic pseudogap state that appears below doping-dependent temperature T*. Thus a clue to the pairing mechanism resides in the pseudogap and associated anomalous transport properties. Recent experiments suggested a phase transition at T*, yet, most importantly, relevant fluctuations associated with the pseudogap have not been identified. Here we report on direct observations of enhanced nematic fluctuations in (Bi,Pb)2Sr2CaCu2O8+d by elastoresistance measurements, which couple to twofold in-plane electronic anisotropy, i.e. electronic nematicity. The nematic susceptibility shows Curie-Weiss-like temperature dependence above T*, and an anomaly at T* evidences a second-order transition with broken rotational symmetry. Near the pseudogap end point, where Tc is not far from its peak in the superconducting dome, nematic susceptibility becomes singular and divergent, indicating the presence of a nematic QCP. This signifies quantum critical fluctuations of a nematic order, which has emerging links to the high-Tc superconductivity and strange metallic behaviours in cuprates.
136 - D. Labat , I. Paul 2017
We study how superconducting Tc is affected as an electronic system in a tetragonal environment is tuned to a nematic quantum critical point (QCP). Including coupling of the electronic nematic variable to the relevant lattice strain restricts critica lity only to certain high symmetry directions. This allows a weak-coupling treatment, even at the QCP. We develop a criterion distinguishing weak and strong Tc enhancements upon approaching the QCP. We show that negligible Tc enhancement occurs only if pairing is dominated by a non-nematic interaction away from the QCP, and simultaneously if the electron-strain coupling is sufficiently strong. We argue this is the case of the iron superconductors.
High temperature superconductivity emerges in the vicinity of competing strongly correlated phases. In the iron-based superconductor $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$, the superconducting state shares the composition-temperature phase diagram with an el ectronic nematic phase and an antiferromagnetic phase that break the crystalline rotational symmetry. Symmetry considerations suggest that anisotropic strain can enhance these competing phases and thus suppress the superconductivity. Here we study the effect of anisotropic strain on the superconducting transition in single crystals of $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ through electrical transport, magnetic susceptibility, and x-ray diffraction measurements. We find that in the underdoped and near-optimally doped regions of the phase diagram, the superconducting critical temperature is rapidly suppressed by both compressive and tensile stress, and in the underdoped case this suppression is enough to induce a strain-tuned superconductor to metal quantum phase transition.
We report neutron scattering and AC magnetic susceptibility measurements of the 2D spin-1/2 frustrated magnet BaCdVO(PO$_{4}$)$_{2}$. At temperatures well below $T_{sf N}approx 1K$, we show that only 34 % of the spin moment orders in an up-up-down-do wn strip structure. Dominant magnetic diffuse scattering and comparison to published $mu$sr measurements indicates that the remaining 66 % is fluctuating. This demonstrates the presence of strong frustration, associated with competing ferromagnetic and antiferromagnetic interactions, and points to a subtle ordering mechanism driven by magnon interactions. On applying magnetic field, we find that at $T=0.1$ K the magnetic order vanishes at 3.8 T, whereas magnetic saturation is reached only above 4.5 T. We argue that the putative high-field phase is a realization of the long-sought bond-spin-nematic state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا