ﻻ يوجد ملخص باللغة العربية
Strong electronic nematic fluctuations have been discovered near optimal doping for several families of Fe-based superconductors, motivating the search for a possible link between these fluctuations, nematic quantum criticality, and high temperature superconductivity. Here we probe a key prediction of quantum criticality, namely power law dependence of the associated nematic susceptibility as a function of composition and temperature approaching the compositionally-tuned putative quantum critical point. To probe the bare quantum critical point requires suppression of the superconducting state, which we achieve by using large magnetic fields, up to 45 T, while performing elastoresistivity measurements to follow the nematic susceptibility. We performed these measurements for the prototypical electron-doped pnictide, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, over a dense comb of dopings. We find that close to the putative quantum critical point, the nematic susceptibility appears to obey power law behavior over almost a decade of variation in composition, consistent with basic notions of nematic quantum criticality. Paradoxically, however, we also find that the temperature dependence for compositions close to the critical value cannot be described by a single power law. This is surprising as power law scaling in both doping and temperature is expected close to a quantum critical point.
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuat
We study how superconducting Tc is affected as an electronic system in a tetragonal environment is tuned to a nematic quantum critical point (QCP). Including coupling of the electronic nematic variable to the relevant lattice strain restricts critica
High temperature superconductivity emerges in the vicinity of competing strongly correlated phases. In the iron-based superconductor $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$, the superconducting state shares the composition-temperature phase diagram with an el
We report neutron scattering and AC magnetic susceptibility measurements of the 2D spin-1/2 frustrated magnet BaCdVO(PO$_{4}$)$_{2}$. At temperatures well below $T_{sf N}approx 1K$, we show that only 34 % of the spin moment orders in an up-up-down-do