ﻻ يوجد ملخص باللغة العربية
The conjecture, still widely open, posed by Marco Buratti, Peter Horak and Alex Rosa states that a list $L$ of $v-1$ positive integers not exceeding $leftlfloor frac{v}{2}rightrfloor$ is the list of edge-lengths of a suitable Hamiltonian path of the complete graph with vertex-set ${0,1,ldots,v-1}$ if and only if, for every divisor $d$ of $v$, the number of multiples of $d$ appearing in $L$ is at most $v-d$. In this paper we present new methods that are based on linear realizations and can be applied to prove the validity of this conjecture for a vast choice of lists. As example of their flexibility, we consider lists whose underlying set is one of the following: ${x,y,x+y}$, ${1,2,3,4}$, ${1,2,4,ldots,2x}$, ${1,2,4,ldots,2x,2x+1}$. We also consider lists with many consecutive elements.
Label the vertices of the complete graph $K_v$ with the integers ${ 0, 1, ldots, v-1 }$ and define the length of the edge between $x$ and $y$ to be $min( |x-y| , v - |x-y| )$. Let $L$ be a multiset of size $v-1$ with underlying set contained in ${ 1,
This report formulates a conjectural combinatorial rule that positively expands Grothendieck polynomials into Lascoux polynomials. It generalizes one such formula expanding Schubert polynomials into key polynomials, and refines another one expanding stable Grothendieck polynomials.
For a simple graph $G$, denote by $n$, $Delta(G)$, and $chi(G)$ its order, maximum degree, and chromatic index, respectively. A connected class 2 graph $G$ is edge-chromatic critical if $chi(G-e)<Delta(G)+1$ for every edge $e$ of $G$. Define $G$ to b
A Latin square of order $n$ is an $n times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Lati
A well-known combinatorial theorem says that a set of n non-collinear points in the plane determines at least n distinct lines. Chen and Chvatal conjectured that this theorem extends to metric spaces, with an appropriated definition of line. In this