ﻻ يوجد ملخص باللغة العربية
A Latin square of order $n$ is an $n times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Latin squares goes back more than 200 years to the work of Euler. One of the most famous open problems in this area is a conjecture of Ryser-Brualdi-Stein from 60s which says that every Latin square of order $ntimes n$ contains a transversal of order $n-1$. In this paper we prove the existence of a transversal of order $n-O(log{n}/log{log{n}})$, improving the celebrated bound of $n-O(log^2n)$ by Hatami and Shor. Our approach (different from that of Hatami-Shor) is quite general and gives several other applications as well. We obtain a new lower bound on a 40 year old conjecture of Brouwer on the maximum matching in Steiner triple systems, showing that every such system of order $n$ is guaranteed to have a matching of size $n/3-O(log{n}/log{log{n}})$. This substantially improves the current best result of Alon, Kim and Spencer which has the error term of order $n^{1/2+o(1)}$. Finally, we also show that $O(nlog{n}/log{log{n}})$ many symbols in Latin arrays suffice to guarantee a full transversal, improving on previously known bound of $n^{2-varepsilon}$. The proofs combine in a novel way the semirandom method together with the robust expansion properties of edge coloured pseudorandom graphs to show the existence of a rainbow matching covering all but $O(log n/log{log{n}})$ vertices. All previous results, based on the semi-random method, left uncovered at least $Omega(n^{alpha})$ (for some constant $alpha$) vertices.
In this paper, we establish several results related to Crouzeixs conjecture. We show that the conjecture holds for contractions with eigenvalues that are sufficiently well-separated. This separation is measured by the so-called separation constant, w
A Gallai-coloring (Gallai-$k$-coloring) is an edge-coloring (with colors from ${1, 2, ldots, k}$) of a complete graph without rainbow triangles. Given a graph $H$ and a positive integer $k$, the $k$-colored Gallai-Ramsey number $GR_k(H)$ is the minim
We show that the maximum number of pairwise non-overlapping $k$-rich lenses (lenses formed by at least $k$ circles) in an arrangement of $n$ circles in the plane is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{5/2}} + frac{n}{k} right)$, and the sum of the de
Let $t$ be an integer such that $tgeq 2$. Let $K_{2,t}^{(3)}$ denote the triple system consisting of the $2t$ triples ${a,x_i,y_i}$, ${b,x_i,y_i}$ for $1 le i le t$, where the elements $a, b, x_1, x_2, ldots, x_t,$ $y_1, y_2, ldots, y_t$ are all dist
We apply the Discharging Method to prove the 1,2,3-Conjecture and the 1,2-Conjecture for graphs with maximum average degree less than 8/3. Stronger results on these conjectures have been proved, but this is the first application of discharging to the