ﻻ يوجد ملخص باللغة العربية
The essential features of many interfaces driven out of equilibrium are described by the same equation---the Kardar-Parisi-Zhang (KPZ) equation. How do living interfaces, such as the cell membrane, fit into this picture? In an endeavour to answer such a question, we proposed in [F. Cagnetta, M. R. Evans, D. Marenduzzo, PRL 120, 258001 (2018)] an idealised model for the membrane of a moving cell. Here we discuss how the addition of simple ingredients inspired by the dynamics of the membrane of moving cells affects common kinetic roughening theories such as the KPZ and Edwards-Wilkinson equations.
We study the dependence of the surface tension of a fluid interface on the density profile of a third suspended phase. By means of an approximated model for the binary mixture and of a perturbative approach we derive close formulas for the free energ
Using concepts from perturbation and local molecular field theories of liquids we divide the potential of the SPC/E water model into short and long ranged parts. The short ranged parts define a minimal reference network model that captures very well
The curvature dependence of interfacial free energy, which is crucial in quantitatively predicting nucleation kinetics and the stability of bubbles and droplets, can be described in terms of the Tolman length {delta}. For solid-liquid interfaces, how
We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose
We obtain a kinetic description of spatially averaged dynamics of particle systems. Spatial averaging is one of the three types of averaging relevant within the Irwing-Kirkwood procedure (IKP), a general method for deriving macroscopic equations from