ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic roughening in active interfaces

87   0   0.0 ( 0 )
 نشر من قبل Francesco Cagnetta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The essential features of many interfaces driven out of equilibrium are described by the same equation---the Kardar-Parisi-Zhang (KPZ) equation. How do living interfaces, such as the cell membrane, fit into this picture? In an endeavour to answer such a question, we proposed in [F. Cagnetta, M. R. Evans, D. Marenduzzo, PRL 120, 258001 (2018)] an idealised model for the membrane of a moving cell. Here we discuss how the addition of simple ingredients inspired by the dynamics of the membrane of moving cells affects common kinetic roughening theories such as the KPZ and Edwards-Wilkinson equations.



قيم البحث

اقرأ أيضاً

We study the dependence of the surface tension of a fluid interface on the density profile of a third suspended phase. By means of an approximated model for the binary mixture and of a perturbative approach we derive close formulas for the free energ y of the system and for the surface tension of the interface. Our results show a remarkable non-monotonous dependence of the surface tension on the peak of the density of the suspended phase. Our results also predict the local value of the surface tension in the case in which the density of the suspended phase is not homogeneous along the interface.
Using concepts from perturbation and local molecular field theories of liquids we divide the potential of the SPC/E water model into short and long ranged parts. The short ranged parts define a minimal reference network model that captures very well the structure of the local hydrogen bond network in bulk water while ignoring effects of the remaining long ranged interactions. This deconstruction can provide insight into the different roles that the local hydrogen bond network, dispersion forces, and long ranged dipolar interactions play in determining a variety of properties of SPC/E and related classical models of water. Here we focus on the anomalous behavior of the internal pressure and the temperature dependence of the density of bulk water. We further utilize these short ranged models along with local molecular field theory to quantify the influence of these interactions on the structure of hydrophobic interfaces and the crossover from small to large scale hydration behavior. The implications of our findings for theories of hydrophobicity and possible refinements of classical water models are also discussed.
The curvature dependence of interfacial free energy, which is crucial in quantitatively predicting nucleation kinetics and the stability of bubbles and droplets, can be described in terms of the Tolman length {delta}. For solid-liquid interfaces, how ever,{delta} has never been computed directly due to various theoretical and practical challenges. Here we present a general method that enables the direct evaluation of the Tolman length from atomistic simulations of a solid-liquid planar interface in out-of-equilibrium conditions. This method works by first measuring the surface tension from the amplitude of thermal capillary fluctuations of a localized version of Gibbs dividing surface, and bythen computing the free energy difference between the surface of tension and the equimolar dividing surface. For benchmark purposes, we computed {delta}for a model potential, and compared the results to less rigorous indirect approaches.
We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose surfaces break the rotation-inversion symmetry through alternated patches of different inelasticity, immersed in a gas of granular particles. The main novelty of our experimental setup is in the orientation of the main axis, which is parallel to the (vertical) direction of shaking of the granular fluid, guaranteeing an isotropic distribution for the velocities of colliding grains, characterized by a variance $v_0^2$. We also keep the granular system diluted, in order to compare with Boltzmann-equation-based kinetic theory. In agreement with theory, we observe for the first time the crucial role of Coulomb friction which induces two main regimes: (i) rare collisions (RC), with an average drift $ < omega > sim v_0^3$, and (ii) frequent collisions (FC), with $ < omega > sim v_0$. We also study the fluctuations of the angle spanned in a large time interval, $Delta theta$, which in the FC regime is proportional to the work done upon the motor. We observe that the Fluctuation Relation is satisfied with a slope which weakly depends on the relative collision frequency.
We obtain a kinetic description of spatially averaged dynamics of particle systems. Spatial averaging is one of the three types of averaging relevant within the Irwing-Kirkwood procedure (IKP), a general method for deriving macroscopic equations from molecular models. The other two types, ensemble averaging and time averaging, have been extensively studied, while spatial averaging is relatively less understood. We show that the average density, linear momentum, and kinetic energy used in IKP can be obtained from a single average quantity, called the generating function. A kinetic equation for the generating function is obtained and tested numerically on Lennard-Jones oscillator chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا