ﻻ يوجد ملخص باللغة العربية
Purpose: To introduce a novel deep learning method for Robust and Accelerated Reconstruction (RoAR) of quantitative and B0-inhomogeneity-corrected R2* maps from multi-gradient recalled echo (mGRE) MRI data. Methods: RoAR trains a convolutional neural network (CNN) to generate quantitative R2* maps free from field inhomogeneity artifacts by adopting a self-supervised learning strategy given (a) mGRE magnitude images, (b) the biophysical model describing mGRE signal decay, and (c) preliminary-evaluated F-function accounting for contribution of macroscopic B0 field inhomogeneities. Importantly, no ground-truth R2* images are required and F-function is only needed during RoAR training but not application. Results: We show that RoAR preserves all features of R2* maps while offering significant improvements over existing methods in computation speed (seconds vs. hours) and reduced sensitivity to noise. Even for data with SNR=5 RoAR produced R2* maps with accuracy of 22% while voxel-wise analysis accuracy was 47%. For SNR=10 the RoAR accuracy increased to 17% vs. 24% for direct voxel-wise analysis. Conclusion: RoAR is trained to recognize the macroscopic magnetic field inhomogeneities directly from the input magnitude-only mGRE data and eliminate their effect on R2* measurements. RoAR training is based on the biophysical model and does not require ground-truth R2* maps. Since RoAR utilizes signal information not just from individual voxels but also accounts for spatial patterns of the signals in the images, it reduces the sensitivity of R2* maps to the noise in the data. These features plus high computational speed provide significant benefits for the potential usage of RoAR in clinical settings.
High spatial and temporal resolution across the whole brain is essential to accurately resolve neural activities in fMRI. Therefore, accelerated imaging techniques target improved coverage with high spatio-temporal resolution. Simultaneous multi-slic
Deep Learning (DL) has shown potential in accelerating Magnetic Resonance Image acquisition and reconstruction. Nevertheless, there is a dearth of tailored methods to guarantee that the reconstruction of small features is achieved with high fidelity.
Purpose: To introduce two novel learning-based motion artifact removal networks (LEARN) for the estimation of quantitative motion- and $B0$-inhomogeneity-corrected $R_2^ast$ maps from motion-corrupted multi-Gradient-Recalled Echo (mGRE) MRI data. M
We present a deep network interpolation strategy for accelerated parallel MR image reconstruction. In particular, we examine the network interpolation in parameter space between a source model that is formulated in an unrolled scheme with L1 and SSIM
Purpose: To develop a Breast Imaging Reporting and Data System (BI-RADS) breast density deep learning (DL) model in a multi-site setting for synthetic two-dimensional mammography (SM) images derived from digital breast tomosynthesis exams using full-