ترغب بنشر مسار تعليمي؟ اضغط هنا

Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics

58   0   0.0 ( 0 )
 نشر من قبل Matt Zhang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of particles produced in high-energy physics collisions. We train neural networks on shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.



قيم البحث

اقرأ أيضاً

In the framework of three-active-neutrino mixing, the charge parity phase, the neutrino mass ordering, and the octant of $theta_{23}$ remain unknown. The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillat ion experiment, which aims to address these questions by measuring the oscillation patterns of $ u_mu/ u_e$ and $bar u_mu/bar u_e$ over a range of energies spanning the first and second oscillation maxima. DUNE far detector modules are based on liquid argon TPC (LArTPC) technology. A LArTPC offers excellent spatial resolution, high neutrino detection efficiency, and superb background rejection, while reconstruction in LArTPC is challenging. Deep learning methods, in particular, Convolutional Neural Networks (CNNs), have demonstrated success in classification problems such as particle identification in DUNE and other neutrino experiments. However, reconstruction of neutrino energy and final state particle momenta with deep learning methods is yet to be developed for a full AI-based reconstruction chain. To precisely reconstruct these kinematic characteristics of detected interactions at DUNE, we have developed and will present two CNN-based methods, 2-D and 3-D, for the reconstruction of final state particle direction and energy, as well as neutrino energy. Combining particle masses with the kinetic energy and the direction reconstructed by our work, the four-momentum of final state particles can be obtained. Our models show considerable improvements compared to the traditional methods for both scenarios.
Physics-guided deep learning (PG-DL) via algorithm unrolling has received significant interest for improved image reconstruction, including MRI applications. These methods unroll an iterative optimization algorithm into a series of regularizer and da ta consistency units. The unrolled networks are typically trained end-to-end using a supervised approach. Current supervised PG-DL approaches use all of the available sub-sampled measurements in their data consistency units. Thus, the network learns to fit the rest of the measurements. In this study, we propose to improve the performance and robustness of supervised training by utilizing randomness by retrospectively selecting only a subset of all the available measurements for data consistency units. The process is repeated multiple times using different random masks during training for further enhancement. Results on knee MRI show that the proposed multi-mask supervised PG-DL enhances reconstruction performance compared to conventional supervised PG-DL approaches.
201 - Jose Repond 2011
This talk reviews the development of imaging calorimeters for the purpose of applying Particle Flow Algorithms (PFAs) to the measurement of hadronic jets at a future lepton collider. After a short introduction, the current status of PFA developments is presented, followed by a review of the major developments in electromagnetic and hadronic calorimetry.
Late gadolinium enhancement (LGE) cardiac MRI (CMR) is the clinical standard for diagnosis of myocardial scar. 3D isotropic LGE CMR provides improved coverage and resolution compared to 2D imaging. However, image acceleration is required due to long scan times and contrast washout. Physics-guided deep learning (PG-DL) approaches have recently emerged as an improved accelerated MRI strategy. Training of PG-DL methods is typically performed in supervised manner requiring fully-sampled data as reference, which is challenging in 3D LGE CMR. Recently, a self-supervised learning approach was proposed to enable training PG-DL techniques without fully-sampled data. In this work, we extend this self-supervised learning approach to 3D imaging, while tackling challenges related to small training database sizes of 3D volumes. Results and a reader study on prospectively accelerated 3D LGE show that the proposed approach at 6-fold acceleration outperforms the clinically utilized compressed sensing approach at 3-fold acceleration.
Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10 - 15 years of R&D, mainly conducted within the CALICE collaboration , for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g. hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا