ﻻ يوجد ملخص باللغة العربية
The role played by the large-scale structures in the galaxy evolution is not quite well understood yet. In this study, we investigate properties of galaxy in the range 0.1<z<0.3 from a value-added version of the WISExSCOS catalogue around cosmic filaments detected with DisPerSE. We have fitted a profile of galaxy over-density around cosmic filaments and found a typical radius of r_m = 7.5+-0.2 Mpc. We have measured an excess of passive galaxies near the filaments spine, higher than the excess of transitioning and active galaxies. We have also detected SFR and Mstar gradients pointing towards the filaments spine. We have investigated this result and found an Mstar gradient for each type of galaxies: active, transitioning, and passive, and a positive SFR gradient for passive galaxies. We also link the galaxy properties and the gas content in the Cosmic Web. To do so, we have investigated the quiescent fraction fQ profile of galaxies around the cosmic filaments. Based on recent studies about the effect of the gas and of the Cosmic Web on galaxy properties, we have modeled fQ with a beta model of gas pressure. The slope obtained here, beta=0.54+-0.18, is compatible with the scenario of projected isothermal gas in hydrostatic equilibrium (beta=2/3), and with the profiles of gas fitted in SZ.
Galaxy evolution reveals itself not only through the evolving properties of galaxies themselves but also through its impact on the surrounding environment. The intergalactic medium in particular holds a fossil record of past galaxy activity, imprinte
We study the properties of SDSS galaxies with and without AGN detection as a function of the local and global environment measured via the local density, the mass of the galaxy host group (parameterised by the group luminosity) and distance to massiv
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1kpc)/Vmax i.e.the ratio of the rotation velocity measured at 1kpc and the maximum measured rotation velocity. We examine whether the observed scat
The connection between galaxy star formation rate (SFR) and dark matter (DM) is of paramount importance for the extraction of cosmological information from next generation spectroscopic surveys that will target emission line star forming galaxies. Us
We explore properties of close galaxy pairs and merging systems selected from the SDSS-DR4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we