ترغب بنشر مسار تعليمي؟ اضغط هنا

Filament profiles from WISExSCOS galaxies as probes of the impact of environmental effects

83   0   0.0 ( 0 )
 نشر من قبل Victor Bonjean
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role played by the large-scale structures in the galaxy evolution is not quite well understood yet. In this study, we investigate properties of galaxy in the range 0.1<z<0.3 from a value-added version of the WISExSCOS catalogue around cosmic filaments detected with DisPerSE. We have fitted a profile of galaxy over-density around cosmic filaments and found a typical radius of r_m = 7.5+-0.2 Mpc. We have measured an excess of passive galaxies near the filaments spine, higher than the excess of transitioning and active galaxies. We have also detected SFR and Mstar gradients pointing towards the filaments spine. We have investigated this result and found an Mstar gradient for each type of galaxies: active, transitioning, and passive, and a positive SFR gradient for passive galaxies. We also link the galaxy properties and the gas content in the Cosmic Web. To do so, we have investigated the quiescent fraction fQ profile of galaxies around the cosmic filaments. Based on recent studies about the effect of the gas and of the Cosmic Web on galaxy properties, we have modeled fQ with a beta model of gas pressure. The slope obtained here, beta=0.54+-0.18, is compatible with the scenario of projected isothermal gas in hydrostatic equilibrium (beta=2/3), and with the profiles of gas fitted in SZ.

قيم البحث

اقرأ أيضاً

Galaxy evolution reveals itself not only through the evolving properties of galaxies themselves but also through its impact on the surrounding environment. The intergalactic medium in particular holds a fossil record of past galaxy activity, imprinte d on its thermodynamic and chemical properties. This is most easily discerned in small galaxy groups, where the gravitational heating of this gas renders it observable by X-ray telescopes while still leaving its properties highly susceptible to the effects of galactic feedback. X-ray observations of the hot gas in groups can therefore provide a view of galactic feedback history that can complement dedicated studies of AGN and star formation activity at low and high redshift. Based on high-quality X-ray data of a sample of nearby groups, we present initial results of such a study and discuss some implications for the AGN and star formation histories of the group members.
109 - Nelson Padilla PUC 2009
We study the properties of SDSS galaxies with and without AGN detection as a function of the local and global environment measured via the local density, the mass of the galaxy host group (parameterised by the group luminosity) and distance to massiv e clusters. Our results can be divided in two main subjects, the environments of galaxies and their relation to the assembly of their host haloes, and the environments of AGN. (i) For the full SDSS sample, we find indications that the local galaxy density is the most efficient parameter to separate galaxy populations, but we also find that galaxies at fixed local density show some remaining variation of their properties as a function of the distance to the nearest cluster of galaxies (in a range of 0 to 10 cluster virial radii). These differences seem to become less significant if the galaxy samples are additionally constrained to be hosted by groups of similar total luminosity. (ii) In AGN host galaxies, the morphology-density relation is much less noticeable when compared to the behaviour of the full SDSS sample. In order to interpret this result we analyse control samples constructed using galaxies with no detected AGN activity with matching distributions of redshifts, stellar masses, r-band luminosities, g-r colours, concentrations, local densities, host group luminosities, and fractions of central and satellite galaxies. The control samples also show a similar small dependence on the local density indicating an influence from the AGN selection, but their colours are slightly bluer compared to the AGN hosts regardless of local density. Furthermore, even when the local density is held fixed at intermediate or high values, and the distance to the closest cluster of galaxies is allowed to vary, AGN control galaxies away from clusters tend to be bluer than the AGN hosts. (ABRIDGED)
162 - Chris Brook 2015
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1kpc)/Vmax i.e.the ratio of the rotation velocity measured at 1kpc and the maximum measured rotation velocity. We examine whether the observed scat ter can be accounted for by combining scatters in disc scale-lengths, the concentration-halo mass relation, and the M*-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter halos that have universal, NFW density profiles, the model does not match the lowest observed values of Vrot(1kpc)/Vmax and has too little scatter in Vrot(1kpc)/Vmax compared to observations. By contrast, a model using a mass dependent dark matter profile, where the inner slope is determined by the ratio of M*/Mhalo, produces galaxies with low values of Vrot(1kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as SIDM may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
The connection between galaxy star formation rate (SFR) and dark matter (DM) is of paramount importance for the extraction of cosmological information from next generation spectroscopic surveys that will target emission line star forming galaxies. Us ing publicly available mock galaxy catalogs obtained from various semi-analytic models (SAMs) we explore the SFR-DM connection in relation to the speed-from-light method (Feix et al. 2016) for inferring the growth rate, $f$, from luminosity/SFR shifts. Emphasis is given to the dependence of the SFR distribution on the environment density on scales of 10s-100s Mpc. We show that the application of the speed-from-light method to an Euclid-like survey is not biased by environmental effects. In all models, the precision on the measured $beta=f/b$ parameter is $sigma_beta < 0.17$ at $z=1$. This translates into errors of $sigma_f sim 0.22$ and $sigma_{(fsigma_8)}sim 0.1$, without invoking assumptions on the mass power spectrum. These errors are in the same ballpark as recent analyses of the redshift space distortions in galaxy clustering. In agreement with previous studies, the bias factor, $b$ is roughly a scale-independent, constant function of the SFR for star forming galaxies. Its value at $z=1$ ranges from $1.2$ to $1.5$ depending on the SAM recipe. Although in all SAMs denser environments host galaxies with higher stellar masses, the dependence of the SFR on the environment is more involved. In most models the SFR probability distribution is skewed to larger values in denser regions. One model exhibits an inverted trend where high SFR is suppressed in dense environment.
66 - Josefa Perez 2009
We explore properties of close galaxy pairs and merging systems selected from the SDSS-DR4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we perform a comparative study of galaxies with and without close companions as a function of local density and host-halo mass, carefully removing sources of possible biases. We find that at low and high local density environments, colours and morphologies of close galaxy pairs are very similar to those of isolated galaxies. At intermediate densities, we detect significant differences, indicating that close pairs could have experienced a more rapid transition onto the red sequence than isolated galaxies. The presence of a correlation between colours and morphologies indicates that the physical mechanism responsible for the colour transformation also operates changing galaxy morphologies. Regardless of dark matter halo mass, we show that the percentage of red galaxies in close pairs and in the control sample are comparable at low and high local density environments. However, at intermediate local densities, the gap in the red fraction between close pairs and the control galaxies increases from ~10% in low mass haloes up to ~50% in the most massive ones. Our findings suggest that in intermediate density environments galaxies are efficiently pre-processed by close encounters and mergers before entering higher local density regions. (Abridge)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا