ﻻ يوجد ملخص باللغة العربية
Galaxy evolution reveals itself not only through the evolving properties of galaxies themselves but also through its impact on the surrounding environment. The intergalactic medium in particular holds a fossil record of past galaxy activity, imprinted on its thermodynamic and chemical properties. This is most easily discerned in small galaxy groups, where the gravitational heating of this gas renders it observable by X-ray telescopes while still leaving its properties highly susceptible to the effects of galactic feedback. X-ray observations of the hot gas in groups can therefore provide a view of galactic feedback history that can complement dedicated studies of AGN and star formation activity at low and high redshift. Based on high-quality X-ray data of a sample of nearby groups, we present initial results of such a study and discuss some implications for the AGN and star formation histories of the group members.
The role played by the large-scale structures in the galaxy evolution is not quite well understood yet. In this study, we investigate properties of galaxy in the range 0.1<z<0.3 from a value-added version of the WISExSCOS catalogue around cosmic fila
We explore properties of close galaxy pairs and merging systems selected from the SDSS-DR4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we
Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11
We present a large-scale galaxy structure Cl J021734-0513 at z~0.65 discovered in the UKIDSS UDS field, made of ~20 galaxy groups and clusters, spreading over 10 Mpc. We report on a VLT/VIMOS spectroscopic follow-up program that, combined with past s
Magnetic fields have been observed in galaxy clusters with strengths of the order of $sim mu$G. The non-thermal pressure exerted by magnetic fields also contributes to the total pressure in galaxy clusters and can in turn affect the estimates of the