ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-controllable growth of ultrathin 2D magnetic FeTe crystals

162   0   0.0 ( 0 )
 نشر من قبل Lixing Kang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) magnets with intrinsic ferromagnetic/antiferromagnetic (FM/AFM) ordering are highly desirable for future spintronics devices. However, the synthesis of 2D magnetic crystals, especially the direct growth on SiO2/Si substrate, is just in its infancy. Here, we report a chemical vapor deposition (CVD)-based rational growth approach for the synthesis of ultrathin FeTe crystals with controlled structural and magnetic phases. By precisely optimizing the growth temperature (Tgrowth), FeTe nanoplates with either layered tetragonal or non-layered hexagonal phase can be controlled with high-quality. The two controllable phases lead to square and triangular morphologies with a thickness down to 3.6 and 2.8 nm, respectively. More importantly, transport measurements reveal that tetragonal FeTe is antiferromagnetic with a Neel temperature (TN) about 71.8 K, while hexagonal FeTe is ferromagnetic with a Curie temperature (TC) around 220 K. Theoretical calculations indicate that the ferromagnetic order in hexagonal FeTe is originated from a concomitant lattice distortion and the spin-lattice coupling. This study represents a major step forward in the CVD growth of 2D magnetic materials on SiO2/Si substrates and highlights on their potential applications in the future spintronic devices.

قيم البحث

اقرأ أيضاً

We present a study of the thickness dependence of magnetism and electrical conductivity in ultra thin La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates. We found a critical thickness of 10 unit cells below which the conductivity of the films di sappeared and simultaneously the Curie temperature (TC) increased, indicating a magnetic insulating phase at room temperature. These samples have a TC of about 560 K with a significant saturation magnetization of 1.2 +- 0.2 muB/Mn. The canted antiferromagnetic insulating phase in ultra thin films of n< 10 coincides with the occurrence of a higher symmetry structural phase with a different oxygen octahedra rotation pattern. Such a strain engineered phase is an interesting candidate for an insulating tunneling barrier in room temperature spin polarized tunneling devices.
Inorganic-organic interfaces are important for enhancing the power conversion efficiency of silicon-based solar cells through singlet exciton fission (SF). We elucidated the structure of the first monolayers of tetracene (Tc), a SF molecule, on hydro gen-passivated Si(111) [H-Si(111)] and hydrogenated amorphous Si (a-Si:H) by combining near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) experiments with density functional theory (DFT) calculations. For samples grown at or below substrate temperatures of 265 K, the resulting ultrathin Tc films are dominated by almost upright-standing molecules. The molecular arrangement is very similar to the Tc bulk phase, with only slightly higher average angle between the conjugated molecular plane normal and the surface normal ($alpha$) around 77{deg}. Judging from carbon K-edge X-ray absorption spectra, the orientation of the Tc molecules are almost identical when grown on H-Si(111) and a-Si:H substrates as well as for (sub)mono- to several-monolayer coverages. Annealing to room temperature, however, changes the film structure towards a smaller $alpha$ of about 63{deg}. A detailed DFT-assisted analysis suggests that this structural transition is correlated with a lower packing density and requires a well-chosen amount of thermal energy. Therefore, we attribute the resulting structure to a distinct monolayer configuration that features less inclined, but still well-ordered molecules. The larger overlap with the substrate wavefunctions makes this arrangement attractive for an optimized interfacial electron transfer in SF-assisted silicon solar cells.
135 - Jun Wang , Junze Li , Shangui Lan 2018
Two-dimensional (2D) organic-inorganic perovskites have recently attracted increasing attention due to their great environmental stability, remarkable quantum confinement effect and layered characteristic. Heterostructures consisting of 2D layered pe rovskites are expected to exhibit new physical phenomena inaccessible to the single 2D perovskites and can greatly extend their functionalities for novel electronic and optoelectronic applications. Herein, we develop a novel solution method to synthesize 2D perovskite single-crystals with the centimeter size, high phase purity, controllable junction depth, high crystalline quality and great stability for highly narrow dual-band photodetectors. On the basis of the different lattice constant, solubility and growth rate between different n number, the newly designed synthesis method allows to first grow n=1 perovskite guided by the self-assembled layer of the organic cations at the water-air interface and subsequently n=2 layer is formed via diffusion process. Such growth process provides an efficient away for us to readily obtain 2D perovskite heterostructural single-crystals with various thickness and junction depth by controlling the concentration, reaction temperature and time. Photodetectors based on such heterostructural single crystal plates exhibit extremely low dark current, high on-off current ratio, and highly narrow dual-band spectral response with a full-width at half-maximum of 20 nm at 540 nm and 34 nm at 610 nm. In particular, the synthetic strategy is general for other 2D perovskites and the narrow dual-band spectral response with all full-width at half-maximum below 40 nm can be continuously tuned from red to blue by properly changing the halide compositions.
Single crystals of the three-dimensional frustrated magnet and spin liquid candidate compound PbCuTe$_2$O$_6$, were grown using both the Travelling Solvent Floating Zone (TSFZ) and the Top-Seeded Solution Growth (TSSG) techniques. The growth conditio ns were optimized by investigating the thermal properties. The quality of the crystals was checked by polarized optical microscopy, X-ray Laue and X-ray powder diffraction, and compared to the polycrystalline samples. Excellent quality crystals were obtained by the TSSG method. Magnetic measurements of these crystals revealed a small anisotropy for different crystallographic directions in comparison with the previously reported data. The heat capacity of both single crystal and powder samples reveal a transition anomaly around 1~K. Curiously the position and magnitude of the transition are strongly dependent on the crystallite size and it is almost entirely absent for the smallest crystallites. A structural transition is suggested which accompanies the reported ferroelectric transition, and a scenario whereby it becomes energetically unfavourable in small crystallites is proposed.
Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 {deg}C and 400 {deg}C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا