ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonnegative Whitney Extension Problem for $C^1(mathbb{R}^n)$

392   0   0.0 ( 0 )
 نشر من قبل Fushuai Jiang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Fushuai Jiang




اسأل ChatGPT حول البحث

Let $ f $ be a real-valued function on a compact subset in $ mathbb{R}^n $. We show how to decide if $ f $ extends to a nonnegative and $ C^1 $ function on $ mathbb{R}^n $. There has been no known result for nonnegative $ C^m $ extension from a general compact set $ E $ when $ m > 0 $. The nonnegative extension problem for $ m geq 2 $ remains open.



قيم البحث

اقرأ أيضاً

Let $ E subset mathbb{R}^2 $ be a finite set, and let $ f : E to [0,infty) $. In this paper, we address the algorithmic aspects of nonnegative $C^2$ interpolation in the plane. Specifically, we provide an efficient algorithm to compute a nonnegative $C^2(mathbb{R}^2)$ extension of $ f $ with norm within a universal constant factor of the least possible. We also provide an efficient algorithm to approximate the trace norm.
240 - Steven B. Damelin 2021
In this memoir, we develop a general framework which allows for a simultaneous study of labeled and unlabeled near alignment data problems in $mathbb R^D$ and the Whitney near isometry extension problem for discrete and non-discrete subsets of $mathb b R^D$ with certain geometries. In addition, we survey related work of ours on clustering, dimension reduction, manifold learning, vision as well as minimal energy partitions, discrepancy and min-max optimization. Numerous open problems in harmonic analysis, computer vision, manifold learning and signal processing connected to our work are given. A significant portion of the work in this memoir is based on joint research with Charles Fefferman in the papers [48], [49], [50], [51].
Fix integers $m geq 2$, $n geq 1$. Let $C^{m-1,1}(mathbb{R}^n)$ be the space of $(m-1)$-times differentiable functions $F : mathbb{R}^n rightarrow mathbb{R}$ whose $(m-1)$st order partial derivatives are Lipschitz continuous, equipped with a standard seminorm. Given $E subseteq mathbb{R}^n$, let $C^{m-1,1}(E)$ be the trace space of all restrictions $F|_E$ of functions $F$ in $C^{m-1,1}(mathbb{R}^n)$, equipped with the standard quotient (trace) seminorm. We prove that there exists a bounded linear operator $T : C^{m-1,1}(E) rightarrow C^{m-1,1}(mathbb{R}^n)$ satisfying $Tf|_E = f$ for all $f in C^{m-1,1}(E)$, with operator norm at most $exp( gamma D^k)$, where $D := binom{m+n-1}{n}$ is the number of multiindices of length $n$ and order at most $m-1$, and $gamma,k > 0$ are absolute constants (independent of $m,n,E$). Our results improve on the previous construction of linear extension operators with norm at most $ exp(gamma D^k 2^D)$.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا