ترغب بنشر مسار تعليمي؟ اضغط هنا

3D numerical study of an anisotropic heat transfer in outer layers of magnetized neutron stars

30   0   0.0 ( 0 )
 نشر من قبل Ilya Kondratyev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodic changes in a thermal soft X-ray flux of a rotating neutron star indicate a non-uniform distribution of the surface temperature. A possible cause of this phenomenon is a suppression of the heat flux across the magnetic field lines in a crust and an envelope of magnetized neutron stars. In this paper we study three-dimensional effects, associated with non-axisymmetric magnetic fields in neutron stars. We calculate the surface temperature distribution by solving numerically a three dimensional heat transfer equation in a magnetized neutron star crust. We adopt an anisotropic (tensorial) electron thermal conductivity coefficient, which is derived as an analytical solution of the Boltzmann equation with a Chapman-Enskog method. To calculate the surface temperature distribution, we construct a local one-dimensional plane-parallel model (Ts-Tb-relationship) of a magnetized neutron star envelope. We then use it as an outer boundary condition for the three-dimensional problem in the crust to find the self-consistent solution. To study possible observational manifestations from anisotropic temperature distributions we calculate light curves with a composite black-body model. Our calculations show, that a non-axisymmetric magnetic field distribution can lead to the irregular non-sinusoidal shape of a pulse profile as well as in some cases a significant amplification of pulsations of the thermal flux in comparison to the pure-dipolar magnetic field configurations.

قيم البحث

اقرأ أيضاً

Determination of a magnetic field structure on a neutron star (NS) surface is an important problem of a modern astrophysics. In a presence of strong magnetic fields a thermal conductivity of a degenerate matter is anisotropic. In this paper we presen t 3D anisotropic heat transfer simulations in outer layers of magnetized NSs, and construct synthetic thermal light curves. We have used a different from previous works tensorial thermal conductivity coefficient of electrons, derived from the analytical solution of the Boltzmann equation by the Chapman-Enskog method. We have obtained a NS surface temperature distribution in presence of dipole-plus-quadrupole magnetic fields. We consider a case, in which magnetic axes of a dipole and quadrupole components of the magnetic field are not aligned. To examine observational manifestations of such fields we have generated thermal light curves for the obtained temperature distributions using a composite black-body model. It is shown, that the simplest (only zero-order spherical function in quadrupole component) non-coaxial dipole-plus-quadrupole magnetic field distribution can significantly affect the thermal light curves, making pulse profiles non-symmetric and amplifying pulsations in comparison to the pure-dipolar field.
Pulsars are highly magnetized and rapidly rotating neutron stars. The magnetic field can reach the critical magnetic field from which quantum effects of the vacuum becomes relevant, giving rise to magnetooptic properties of vacuum characterized as an effective non linear medium. One spectacular consequence of this prediction is a macroscopic friction that leads to an additional contribution in the spindown of pulsars. In this paper, we highlight some observational consequences and in particular derive new constraints on the parameters of the Crab pulsar and J0540-6919.
The fact that a magnetic field in a fermion system breaks the spherical symmetry suggest that the intrinsic geometry of this system is axisymmetric rather than spherical. In this work we analyze the impact of anisotropic pressures, due to the presenc e of a magnetic field, in the structure equations of a magnetized quark star. We assume a cylindrical metric and an anisotropic energy momentum tensor for the source. We found that there is a maximum magnetic field that the star can sustain, closely related to the violation of the virial relations.
We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field $B gsim 10^{13}$ G. At density $rho simeq 10^{12}-10^{14} $ g/cm$^3$ the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity when temperature $simeq 10^8$ K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.
119 - Michael T. Wolff 2019
Studying the physical processes occurring in the region just above the magnetic poles of strongly magnetized, accreting binary neutron stars is essential to our understanding of stellar and binary system evolution. Perhaps more importantly, it provid es us with a natural laboratory for studying the physics of high temperature and high density plasmas exposed to extreme radiation, gravitational, and magnetic fields. Observations over the past decade have shed new light on the manner in which plasma falling at velocities near the speed of light onto a neutron star surface is halted. Recent advances in modeling these processes have resulted in direct measurement of the magnetic fields and plasma properties. On the other hand, numerous physical processes have been identified that challenge our current picture of how the accretion process onto neutron stars works. Observation and theory are our essential tools in this regime because the extreme conditions cannot be duplicated on Earth. This white paper gives an overview of the current theory, the outstanding theoretical and observational challenges, and the importance of addressing them in contemporary astrophysics research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا