ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Robust Classifier: An MDL-Based Method for Generating Adversarial Examples

53   0   0.0 ( 0 )
 نشر من قبل Behzad Asadi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the problem of adversarial examples in machine learning where an adversary tries to misguide a classifier by making functionality-preserving modifications to original samples. We assume a black-box scenario where the adversary has access to only the feature set, and the final hard-decision output of the classifier. We propose a method to generate adversarial examples using the minimum description length (MDL) principle. Our final aim is to improve the robustness of the classifier by considering generated examples in rebuilding the classifier. We evaluate our method for the application of static malware detection in portable executable (PE) files. We consider API calls of PE files as their distinguishing features where the feature vector is a binary vector representing the presence-absence of API calls. In our method, we first create a dataset of benign samples by querying the target classifier. We next construct a code table of frequent patterns for the compression of this dataset using the MDL principle. We finally generate an adversarial example corresponding to a malware sample by selecting and adding a pattern from the benign code table to the malware sample. The selected pattern is the one that minimizes the length of the compressed adversarial example given the code table. This modification preserves the functionalities of the original malware sample as all original API calls are kept, and only some new API calls are added. Considering a neural network, we show that the evasion rate is 78.24 percent for adversarial examples compared to 8.16 percent for original malware samples. This shows the effectiveness of our method in generating examples that need to be considered in rebuilding the classifier.



قيم البحث

اقرأ أيضاً

We design a classifier for transactional datasets with application in malware detection. We build the classifier based on the minimum description length (MDL) principle. This involves selecting a model that best compresses the training dataset for ea ch class considering the MDL criterion. To select a model for a dataset, we first use clustering followed by closed frequent pattern mining to extract a subset of closed frequent patterns (CFPs). We show that this method acts as a pattern summarization method to avoid pattern explosion; this is done by giving priority to longer CFPs, and without requiring to extract all CFPs. We then use the MDL criterion to further summarize extracted patterns, and construct a code table of patterns. This code table is considered as the selected model for the compression of the dataset. We evaluate our classifier for the problem of static malware detection in portable executable (PE) files. We consider API calls of PE files as their distinguishing features. The presence-absence of API calls forms a transactional dataset. Using our proposed method, we construct two code tables, one for the benign training dataset, and one for the malware training dataset. Our dataset consists of 19696 benign, and 19696 malware samples, each a binary sequence of size 22761. We compare our classifier with deep neural networks providing us with the state-of-the-art performance. The comparison shows that our classifier performs very close to deep neural networks. We also discuss that our classifier is an interpretable classifier. This provides the motivation to use this type of classifiers where some degree of explanation is required as to why a sample is classified under one class rather than the other class.
Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of adversarial examples. In training, we propose to minimize the reverse cross-entropy (RCE), which encourages a deep network to learn latent representations that better distinguish adversarial examples from normal ones. In testing, we propose to use a thresholding strategy as the detector to filter out adversarial examples for reliable predictions. Our method is simple to implement using standard algorithms, with little extra training cost compared to the common cross-entropy minimization. We apply our method to defend various attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve significant improvements on robust predictions under all the threat models in the adversarial setting.
Conditional Mutual Information (CMI) is a measure of conditional dependence between random variables X and Y, given another random variable Z. It can be used to quantify conditional dependence among variables in many data-driven inference problems su ch as graphical models, causal learning, feature selection and time-series analysis. While k-nearest neighbor (kNN) based estimators as well as kernel-based methods have been widely used for CMI estimation, they suffer severely from the curse of dimensionality. In this paper, we leverage advances in classifiers and generative models to design methods for CMI estimation. Specifically, we introduce an estimator for KL-Divergence based on the likelihood ratio by training a classifier to distinguish the observed joint distribution from the product distribution. We then show how to construct several CMI estimators using this basic divergence estimator by drawing ideas from conditional generative models. We demonstrate that the estimates from our proposed approaches do not degrade in performance with increasing dimension and obtain significant improvement over the widely used KSG estimator. Finally, as an application of accurate CMI estimation, we use our best estimator for conditional independence testing and achieve superior performance than the state-of-the-art tester on both simulated and real data-sets.
CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can in duce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images, which are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we design and apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarial training, data pre-processing and manual tagging.
Adversarial examples are a hot topic due to their abilities to fool a classifiers prediction. There are two strategies to create such examples, one uses the attacked classifiers gradients, while the other only requires access to the clas-sifiers pred iction. This is particularly appealing when the classifier is not full known (black box model). In this paper, we present a new method which is able to generate natural adversarial examples from the true data following the second paradigm. Based on Generative Adversarial Networks (GANs) [5], it reweights the true data empirical distribution to encourage the classifier to generate ad-versarial examples. We provide a proof of concept of our method by generating adversarial hyperspectral signatures on a remote sensing dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا