ﻻ يوجد ملخص باللغة العربية
We address the problem of adversarial examples in machine learning where an adversary tries to misguide a classifier by making functionality-preserving modifications to original samples. We assume a black-box scenario where the adversary has access to only the feature set, and the final hard-decision output of the classifier. We propose a method to generate adversarial examples using the minimum description length (MDL) principle. Our final aim is to improve the robustness of the classifier by considering generated examples in rebuilding the classifier. We evaluate our method for the application of static malware detection in portable executable (PE) files. We consider API calls of PE files as their distinguishing features where the feature vector is a binary vector representing the presence-absence of API calls. In our method, we first create a dataset of benign samples by querying the target classifier. We next construct a code table of frequent patterns for the compression of this dataset using the MDL principle. We finally generate an adversarial example corresponding to a malware sample by selecting and adding a pattern from the benign code table to the malware sample. The selected pattern is the one that minimizes the length of the compressed adversarial example given the code table. This modification preserves the functionalities of the original malware sample as all original API calls are kept, and only some new API calls are added. Considering a neural network, we show that the evasion rate is 78.24 percent for adversarial examples compared to 8.16 percent for original malware samples. This shows the effectiveness of our method in generating examples that need to be considered in rebuilding the classifier.
We design a classifier for transactional datasets with application in malware detection. We build the classifier based on the minimum description length (MDL) principle. This involves selecting a model that best compresses the training dataset for ea
Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of
Conditional Mutual Information (CMI) is a measure of conditional dependence between random variables X and Y, given another random variable Z. It can be used to quantify conditional dependence among variables in many data-driven inference problems su
CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can in
Adversarial examples are a hot topic due to their abilities to fool a classifiers prediction. There are two strategies to create such examples, one uses the attacked classifiers gradients, while the other only requires access to the clas-sifiers pred