ﻻ يوجد ملخص باللغة العربية
A simple and robust method able to predict, with high accuracy, the optical properties of single and multi-layer nanostructures is presented. The method exploits a COMSOL Multiphysics simulation platform and it has been validated by three case studies with increasing numerical complexity: i) a single thin layer (20 nm) of Ag deposited on a glass substrate; ii) a metamaterial composed of five bi-layers of Ag/ITO (Indium Tin Oxide), with a thickness of 20 nm each; iii) a system based on a three-materials unit cell (AZO/ITO/Ag), but without any thickness periodicity (AZO stands for Al$_2$O$_3$/Zinc Oxide). Numerical results have been compared with experimental data provided by real ellipsometric measurements performed on the above mentioned nanostructures ad-hoc fabricated. The obtained agreement is excellent suggesting this research as a valid approach to design materials able to work in a broad spectrum range.
Nanoscale hydrodynamic instability of ring-like molten rims around ablative microholes produced in nanometer-thick gold films by tightly focused nanosecond-laser pulses was experimentally explored in terms of laser pulse energy and film thickness. Th
A method to perform spectrum analysis on low power signals between 0.1 and 10 THz is proposed. It utilizes a nanoscale antiferromagnetic tunnel junction (ATJ) that produces an oscillating tunneling anisotropic magnetoresistance, whose frequency is de
Structured light enables the characterization of chirality of optically small nanoparticles by taking advantage of the helicity maximization concept recently introduced in[1]. By referring to fields with nonzero helicity density as chiral fields, we
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light emitting diodes and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescenc
Advances in graphene plasmonics offer numerous opportunities for enabling the design and manufacture of a variety of nanoelectronics and other exciting optical devices. However, due to the limitation of material properties, its operating frequency ca