ترغب بنشر مسار تعليمي؟ اضغط هنا

Biases for Emergent Communication in Multi-agent Reinforcement Learning

93   0   0.0 ( 0 )
 نشر من قبل Tom Eccles
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of emergent communication, in which language arises because speakers and listeners must communicate information in order to solve tasks. In temporally extended reinforcement learning domains, it has proved hard to learn such communication without centralized training of agents, due in part to a difficult joint exploration problem. We introduce inductive biases for positive signalling and positive listening, which ease this problem. In a simple one-step environment, we demonstrate how these biases ease the learning problem. We also apply our methods to a more extended environment, showing that agents with these inductive biases achieve better performance, and analyse the resulting communication protocols.

قيم البحث

اقرأ أيضاً

In this work, we study emergent communication through the lens of cooperative multi-agent behavior in nature. Using insights from animal communication, we propose a spectrum from low-bandwidth (e.g. pheromone trails) to high-bandwidth (e.g. compositi onal language) communication that is based on the cognitive, perceptual, and behavioral capabilities of social agents. Through a series of experiments with pursuit-evasion games, we identify multi-agent reinforcement learning algorithms as a computational model for the low-bandwidth end of the communication spectrum.
Agent advising is one of the main approaches to improve agent learning performance by enabling agents to share advice. Existing advising methods have a common limitation that an adviser agent can offer advice to an advisee agent only if the advice is created in the same state as the advisees concerned state. However, in complex environments, it is a very strong requirement that two states are the same, because a state may consist of multiple dimensions and two states being the same means that all these dimensions in the two states are correspondingly identical. Therefore, this requirement may limit the applicability of existing advising methods to complex environments. In this paper, inspired by the differential privacy scheme, we propose a differential advising method which relaxes this requirement by enabling agents to use advice in a state even if the advice is created in a slightly different state. Compared with existing methods, agents using the proposed method have more opportunity to take advice from others. This paper is the first to adopt the concept of differential privacy on advising to improve agent learning performance instead of addressing security issues. The experimental results demonstrate that the proposed method is more efficient in complex environments than existing methods.
Cooperative multi-agent reinforcement learning often requires decentralised policies, which severely limit the agents ability to coordinate their behaviour. In this paper, we show that common knowledge between agents allows for complex decentralised coordination. Common knowledge arises naturally in a large number of decentralised cooperative multi-agent tasks, for example, when agents can reconstruct parts of each others observations. Since agents an independently agree on their common knowledge, they can execute complex coordinated policies that condition on this knowledge in a fully decentralised fashion. We propose multi-agent common knowledge reinforcement learning (MACKRL), a novel stochastic actor-critic algorithm that learns a hierarchical policy tree. Higher levels in the hierarchy coordinate groups of agents by conditioning on their common knowledge, or delegate to lower levels with smaller subgroups but potentially richer common knowledge. The entire policy tree can be executed in a fully decentralised fashion. As the lowest policy tree level consists of independent policies for each agent, MACKRL reduces to independently learnt decentralised policies as a special case. We demonstrate that our method can exploit common knowledge for superior performance on complex decentralised coordination tasks, including a stochastic matrix game and challenging problems in StarCraft II unit micromanagement.
Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Coope rativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
We propose a curriculum-driven learning strategy for solving difficult multi-agent coordination tasks. Our method is inspired by a study of animal communication, which shows that two straightforward design features (mutual reward and decentralization ) support a vast spectrum of communication protocols in nature. We highlight the importance of similarly interpreting emergent communication as a spectrum. We introduce a toroidal, continuous-space pursuit-evasion environment and show that naive decentralized learning does not perform well. We then propose a novel curriculum-driven strategy for multi-agent learning. Experiments with pursuit-evasion show that our approach enables decentralized pursuers to learn to coordinate and capture a superior evader, significantly outperforming sophisticated analytical policies. We argue through additional quantitative analysis -- including influence-based measures such as Instantaneous Coordination -- that emergent implicit communication plays a large role in enabling superior levels of coordination.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا