ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Gas Inflows and Outflows in Ultraluminous Infrared Galaxies at $zsim0.2$ and one QSO at $z=6.1$

74   0   0.0 ( 0 )
 نشر من قبل Rodrigo Herrera-Camus
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We aim to search and characterize inflows and outflows of molecular gas in four ultraluminous infrared galaxies (ULIRGs) at $zsim0.2-0.3$ and one distant QSO at $z=6.13$. Methods. We use Herschel PACS and ALMA Band 7 observations of the hydroxyl molecule (OH) line at rest-frame wavelength 119 $mu$m which in absorption can provide unambiguous evidence for inflows or outflows of molecular gas in nuclear regions of galaxies. Our study contributes to double the number of OH observations of luminous systems at $zsim0.2-0.3$, and push the search for molecular outflows based on the OH transition to $zsim6$. Results. We detect OH high-velocity absorption wings in three of the four ULIRGs. In two cases, IRAS F20036-1547 and IRAS F13352+6402, the blueshifted absorption profiles indicate the presence of powerful and fast molecular gas outflows. Consistent with an inside-out quenching scenario, these outflows are depleting the central reservoir of molecular gas at a similar rate than the intense star formation activity. In the case of the starburst-dominated system IRAS 10091+4704, we detect an inverted P-Cygni profile that is unique among ULIRGs and indicates the presence of a fast ($sim400$ km s$^{-1}$) inflow of molecular gas at a rate of $sim100~M_{odot}~{rm yr}^{-1}$ towards the central region. Finally, we tentatively detect ($sim3sigma$) the OH doublet in absorption in the $z=6.13$ QSO ULAS J131911+095051. The OH feature is blueshifted with a median velocity that suggests the presence of a molecular outflow, although characterized by a modest molecular mass loss rate of $sim200~M_{odot}~{rm yr}^{-1}$. This value is comparable to the small mass outflow rates found in the stacking of the [CII] spectra of other $zsim6$ QSOs and suggests that ejective feedback in this phase of the evolution of ULAS J131911+095051 has subsided.



قيم البحث

اقرأ أيضاً

Brightest cluster galaxies (BCGs) are excellent laboratories to study galaxy evolution in dense Mpc-scale environments. We have observed in CO(1-0), CO(2-1), CO(3-2), or CO(4-3), with the IRAM-30m, 18 BCGs at $zsim0.2-0.9$ that are drawn from the CLA SH survey. Our sample includes RX1532, which is our primary target, being among the BCGs with the highest star formation rate (SFR$gtrsim100~M_odot$/yr) in the CLASH sample. We unambiguously detected both CO(1-0) and CO(3-2) in RX1532, yielding a large reservoir of molecular gas, $M_{H_2}=(8.7pm1.1)times10^{10}~M_odot$, and a high level of excitation $r_{31}=0.75pm0.12$. A morphological analysis of the HST I-band image of RX1532 reveals the presence of clumpy substructures both within and outside the half-light radius $r_e=(11.6pm0.3)$ kpc, similarly to those found independently both in ultraviolet and in H$_alpha$ in previous work. We tentatively detected CO(1-0) or CO(2-1) in four other BCGs, with molecular gas reservoirs in the range $M_{H_2}=2times10^{10-11} M_odot$. For the remaining 13 BCGs we set robust upper limits of $M_{H_2}/M_starlesssim0.1$, which are among the lowest molecular gas to stellar mass ratios found for distant ellipticals and BCGs. By comparison with distant cluster galaxies observed in CO our study shows that RX1532 ($M_{H_2}/M_star = 0.40pm0.05$) belongs to the rare population of star forming and gas-rich BCGs in the distant universe. By using available X-ray based estimates of the central intra-cluster medium entropy, we show that the detection of large reservoirs of molecular gas $M_{H_2}gtrsim10^{10}~M_odot$ in distant BCGs is possible when the two conditions are met: i) high SFR and ii) low central entropy, which favors the condensation and the inflow of gas onto the BCGs themselves, similarly to what has been previously found for some local BCGs.
234 - R. Maiolino , R. Neri , A. Beelen 2007
We present observations with the IRAM Plateau de Bure Interferometer of three QSOs at z>5 aimed at detecting molecular gas in their host galaxies as traced by CO transitions. CO (5-4) is detected in SDSSJ033829.31+002156.3 at z=5.0267, placing it amo ngst the most distant sources detected in CO. The CO emission is unresolved with a beam size of ~1, implying that the molecular gas is contained within a compact region, less than ~3kpc in radius. We infer an upper limit on the dynamical mass of the CO emitting region of ~3x10^10 Msun/sin(i)^2. The comparison with the Black Hole mass inferred from near-IR data suggests that the BH-to-bulge mass ratio in this galaxy is significantly higher than in local galaxies. From the CO luminosity we infer a mass reservoir of molecular gas as high as M(H2)=2.4x10^10 Msun, implying that the molecular gas accounts for a significant fraction of the dynamical mass. When compared to the star formation rate derived from the far-IR luminosity, we infer a very short gas exhaustion timescale (~10^7 yrs), comparable to the dynamical timescale. CO is not detected in the other two QSOs (SDSSJ083643.85+005453.3 and SDSSJ163033.90+401209.6) and upper limits are given for their molecular gas content. When combined with CO observations of other type 1 AGNs, spanning a wide redshift range (0<z<6.4), we find that the host galaxy CO luminosity (hence molecular gas content) and the AGN optical luminosity (hence BH accretion rate) are correlated, but the relation is not linear: L(CO) ~ [lambda*L_lambda(4400A)]^0.72. Moreover, at high redshifts (and especially at z>5) the CO luminosity appears to saturate. We discuss the implications of these findings in terms of black hole-galaxy co-evolution.
316 - C. M. Casey 2009
[abridged] We present interferometric CO observations of twelve z~2 submillimetre-faint, star-forming radio galaxies (SFRGs) which are thought to be ultraluminous infrared galaxies (ULIRGs) possibly dominated by warmer dust (T_dust ~> 40 K) than subm illimetre galaxies (SMGs) of similar luminosities. Four other CO-observed SFRGs are included from the literature, and all observations are taken at the Plateau de Bure Interferometer (PdBI) in the compact configuration. Ten of the sixteen SFRGs observed in CO (63%) are detected at >4sigma with a mean inferred molecular gas mass of ~2*10^10 M_sun. SFRGs trend slightly above the local ULIRG L_FIR-L_CO relation. Since SFRGs are about two times fainter in radio luminosity but exhibit similar CO luminosities to SMGs, this suggests SFRGs are slightly more efficient star formers than SMGs at the same redshifts. SFRGs also have a narrow mean CO line width, 320+-80km/s. SFRGs bridge the gap between properties of very luminous >5*10^12 L_sun SMGs and those of local ULIRGs and are consistent with intermediate stage major mergers. We suspect that more moderate-luminosity SMGs, not yet surveyed in CO, would show similar molecular gas properties to SFRGs. The AGN fraction of SFRGs is consistent with SMGs and is estimated to be 0.3+-0.1, suggesting that SFRGs are observed near the peak phase of star formation activity and not in a later, post-SMG enhanced AGN phase. This CO survey of SFRGs serves as a pilot project for the much more extensive survey of Herschel and SCUBA-2 selected sources which only partially overlap with SMGs. Better constraints on CO properties of a diverse high-z ULIRG population are needed from ALMA to determine the evolutionary origin of extreme starbursts, and what role ULIRGs serve in catalyzing the formation of massive stellar systems in the early Universe.
We analyze the multi-wavelength photometric and spectroscopic data of 12 ultraluminous infrared galaxies (ULIRGs) at z ~ 1 and compare them with models of stars and dust in order to study the extinction law and star formation in young infrared (IR) g alaxies. Five extinction curves, namely, the Milky Way (MW), the pseudo MW which is MW-like without the 2175 Angstrom feature, the Calzetti, and two SN dust curves, are applied to the data, by combining with various dust distributions, namely, the uniform dust screen, the clumpy dust screen, the internal dust geometry, and the composite geometry with a combination of dust screen and internal dust. Employing a minimum chi square method, we find that the foreground dust screen geometry, especially combined with the 8 - 40 M_sun SN extinction curve, provides a good approximation to the real dust geometry, whereas internal dust is only significant in 2 galaxies. The SN extinction curves, which are flatter than the others, reproduce the data of 8(67%) galaxies better. Dust masses are estimated to be in excess of ~ 10^8 M_sun. Inferred ages of the galaxies are very young, 8 of which range from 10 to 650 Myr. The SN-origin dust is the most plausible to account for the vast amount of dust masses and the flat slope of the observed extinction law. The inferred dust mass per SN ranges from 0.01 to 0.4 M_sun/SN.
We study the molecular gas properties of two star-forming galaxies separated by 6 kpc in the projected space and belonging to a galaxy cluster selected from the Irac Shallow Cluster Survey, at a redshift $z=1.2$, i.e., $sim2$ Gyr after the cosmic sta r formation density peak. This work describes the first CO detection from $1<z<1.4$ star forming cluster galaxies with no reported clear evidence of AGN. We exploit observations taken with the NOEMA interferometer at $sim3$ mm to detect CO(2-1) line emission from the two selected galaxies, unresolved by our observations. Based on the CO(2-1) spectrum we estimate a total molecular gas mass $M({rm H_2})=(2.2^{+0.5}_{-0.4})times10^{10}$ $M_odot$ and dust mass $M_{rm dust}<4.2times10^8~M_odot$ for the two blended sources. The two galaxies have similar stellar masses and a large relative velocity of $sim$400 km/s estimated from the CO(2-1) line width. These findings tend to privilege a scenario where both sources contribute to the observed CO(2-1). By using the archival Spitzer MIPS flux at 24$mu$m we estimate an ${rm SFR(24mu m)}=(28^{+12}_{-8})~M_odot$/yr for each of the two galaxies. Assuming that the two sources equally contribute to the observe CO(2-1) our analysis yields a depletion time scale $tau_{rm dep}=(3.9^{+1.4}_{-1.8})times10^8$ yr, and a molecular gas to stellar mass ratio $0.17pm0.13$ for each of two sources, separately. Our results are in overall agreement with those of other distant cluster galaxies. The two target galaxies have molecular gas mass and depletion time that are marginally compatible with, but smaller than those of main sequence field galaxies, suggesting that the molecular gas has not been refueled enough. Higher resolution and higher frequency observations will enable us to spatially resolve the two sources and possibly distinguish between different gas processing mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا