ترغب بنشر مسار تعليمي؟ اضغط هنا

Encoding Musical Style with Transformer Autoencoders

111   0   0.0 ( 0 )
 نشر من قبل Kristy Choi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of learning high-level controls over the global structure of generated sequences, particularly in the context of symbolic music generation with complex language models. In this work, we present the Transformer autoencoder, which aggregates encodings of the input data across time to obtain a global representation of style from a given performance. We show it is possible to combine this global representation with other temporally distributed embeddings, enabling improved control over the separate aspects of performance style and melody. Empirically, we demonstrate the effectiveness of our method on various music generation tasks on the MAESTRO dataset and a YouTube dataset with 10,000+ hours of piano performances, where we achieve improvements in terms of log-likelihood and mean listening scores as compared to baselines.



قيم البحث

اقرأ أيضاً

Musical onset detection can be formulated as a time-to-event (TTE) or time-since-event (TSE) prediction task by defining music as a sequence of onset events. Here we propose a novel method to model the probability of onsets by introducing a sequentia l density prediction model. The proposed model estimates TTE & TSE distributions from mel-spectrograms using convolutional neural networks (CNNs) as a density predictor. We evaluate our model on the Bock dataset show-ing comparable results to previous deep-learning models.
A recurrent Neural Network (RNN) is trained to predict sound samples based on audio input augmented by control parameter information for pitch, volume, and instrument identification. During the generative phase following training, audio input is take n from the output of the previous time step, and the parameters are externally controlled allowing the network to be played as a musical instrument. Building on an architecture developed in previous work, we focus on the learning and synthesis of transients - the temporal response of the network during the short time (tens of milliseconds) following the onset and offset of a control signal. We find that the network learns the particular transient characteristics of two different synthetic instruments, and furthermore shows some ability to interpolate between the characteristics of the instruments used in training in response to novel parameter settings. We also study the behaviour of the units in hidden layers of the RNN using various visualisation techniques and find a variety of volume-specific response characteristics.
In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness. In principle, one could apply image-based style transfer techniques to a time-frequency representation of an audio signal, but this depends on having a representation that allows independent manipulation of timbre as well as high-quality waveform generation. We introduce TimbreTron, a method for musical timbre transfer which applies image domain style transfer to a time-frequency representation of the audio signal, and then produces a high-quality waveform using a conditional WaveNet synthesizer. We show that the Constant Q Transform (CQT) representation is particularly well-suited to convolutional architectures due to its approximate pitch equivariance. Based on human perceptual evaluations, we confirmed that TimbreTron recognizably transferred the timbre while otherwise preserving the musical content, for both monophonic and polyphonic samples.
100 - Shifeng Pan , Lei He 2021
Cross-speaker style transfer is crucial to the applications of multi-style and expressive speech synthesis at scale. It does not require the target speakers to be experts in expressing all styles and to collect corresponding recordings for model trai ning. However, the performances of existing style transfer methods are still far behind real application needs. The root causes are mainly twofold. Firstly, the style embedding extracted from single reference speech can hardly provide fine-grained and appropriate prosody information for arbitrary text to synthesize. Secondly, in these models the content/text, prosody, and speaker timbre are usually highly entangled, its therefore not realistic to expect a satisfied result when freely combining these components, such as to transfer speaking style between speakers. In this paper, we propose a cross-speaker style transfer text-to-speech (TTS) model with explicit prosody bottleneck. The prosody bottleneck builds up the kernels accounting for speaking style robustly, and disentangles the prosody from content and speaker timbre, therefore guarantees high quality cross-speaker style transfer. Evaluation result shows the proposed method even achieves on-par performance with source speakers speaker-dependent (SD) model in objective measurement of prosody, and significantly outperforms the cycle consistency and GMVAE-based baselines in objective and subjective evaluations.
A crucial aspect for the successful deployment of audio-based models in-the-wild is the robustness to the transformations introduced by heterogeneous acquisition conditions. In this work, we propose a method to perform one-shot microphone style trans fer. Given only a few seconds of audio recorded by a target device, MicAugment identifies the transformations associated to the input acquisition pipeline and uses the learned transformations to synthesize audio as if it were recorded under the same conditions as the target audio. We show that our method can successfully apply the style transfer to real audio and that it significantly increases model robustness when used as data augmentation in the downstream tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا