ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Copula Density Deconvolution for Zero-Inflated Data in Nutritional Epidemiology

114   0   0.0 ( 0 )
 نشر من قبل Abhra Sarkar
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimating the marginal and joint densities of the long-term average intakes of different dietary components is an important problem in nutritional epidemiology. Since these variables cannot be directly measured, data are usually collected in the form of 24-hour recalls of the intakes, which show marked patterns of conditional heteroscedasticity. Significantly compounding the challenges, the recalls for episodically consumed dietary components also include exact zeros. The problem of estimating the density of the latent long-time intakes from their observed measurement error contaminated proxies is then a problem of deconvolution of densities with zero-inflated data. We propose a Bayesian semiparametric solution to the problem, building on a novel hierarchical latent variable framework that translates the problem to one involving continuous surrogates only. Crucial to accommodating important aspects of the problem, we then design a copula-based approach to model the involved joint distributions, adopting different modeling strategies for the marginals of the different dietary components. We design efficient Markov chain Monte Carlo algorithms for posterior inference and illustrate the efficacy of the proposed method through simulation experiments. Applied to our motivating nutritional epidemiology problems, compared to other approaches, our method provides more realistic estimates of the consumption patterns of episodically consumed dietary components.



قيم البحث

اقرأ أيضاً

We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contamin ated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls.
We consider nonparametric measurement error density deconvolution subject to heteroscedastic measurement errors as well as symmetry about zero and shape constraints, in particular unimodality. The problem is motivated by applications where the observ ed data are estimated effect sizes from regressions on multiple factors, where the target is the distribution of the true effect sizes. We exploit the fact that any symmetric and unimodal density can be expressed as a mixture of symmetric uniform densities, and model the mixing density in a new way using a Dirichlet process location-mixture of Gamma distributions. We do the computations within a Bayesian context, describe a simple scalable implementation that is linear in the sample size, and show that the estimate of the unknown target density is consistent. Within our application context of regression effect sizes, the target density is likely to have a large probability near zero (the near null effects) coupled with a heavy-tailed distribution (the actual effects). Simulations show that unlike standard deconvolution methods, our Constrained Bayesian Deconvolution method does a much better job of reconstruction of the target density. Applications to a genome-wise association study (GWAS) and microarray data reveal similar results.
Modern RNA sequencing technologies provide gene expression measurements from single cells that promise refined insights on regulatory relationships among genes. Directed graphical models are well-suited to explore such (cause-effect) relationships. H owever, statistical analyses of single cell data are complicated by the fact that the data often show zero-inflated expression patterns. To address this challenge, we propose directed graphical models that are based on Hurdle conditional distributions parametrized in terms of polynomials in parent variables and their 0/1 indicators of being zero or nonzero. While directed graphs for Gaussian models are only identifiable up to an equivalence class in general, we show that, under a natural and weak assumption, the exact directed acyclic graph of our zero-inflated models can be identified. We propose methods for graph recovery, apply our model to real single-cell RNA-seq data on T helper cells, and show simulated experiments that validate the identifiability and graph estimation methods in practice.
We consider the problem of multivariate density deconvolution where the distribution of a random vector needs to be estimated from replicates contaminated with conditionally heteroscedastic measurement errors. We propose a conceptually straightforwar d yet fundamentally novel and highly robust approach to multivariate density deconvolution by stochastically rotating the replicates toward the corresponding true latent values. We also address the additionally significantly challenging problem of accommodating conditionally heteroscedastic measurement errors in this newly introduced framework. We take a Bayesian route to estimation and inference, implemented via an efficient Markov chain Monte Carlo algorithm, appropriately accommodating uncertainty in all aspects of our analysis. Asymptotic convergence guarantees for the method are also established. We illustrate the methods empirical efficacy through simulation experiments and its practical utility in estimating the long-term joint average intakes of different dietary components from their measurement error contaminated 24-hour dietary recalls.
Microorganisms play critical roles in human health and disease. It is well known that microbes live in diverse communities in which they interact synergistically or antagonistically. Thus for estimating microbial associations with clinical covariates , multivariate statistical models are preferred. Multivariate models allow one to estimate and exploit complex interdependencies among multiple taxa, yielding more powerful tests of exposure or treatment effects than application of taxon-specific univariate analyses. In addition, the analysis of microbial count data requires special attention because data commonly exhibit zero inflation. To meet these needs, we developed a Bayesian variable selection model for multivariate count data with excess zeros that incorporates information on the covariance structure of the outcomes (counts for multiple taxa), while estimating associations with the mean levels of these outcomes. Although there has been a great deal of effort in zero-inflated models for longitudinal data, little attention has been given to high-dimensional multivariate zero-inflated data modeled via a general correlation structure. Through simulation, we compared performance of the proposed method to that of existing univariate approaches, for both the binary and count parts of the model. When outcomes were correlated the proposed variable selection method maintained type I error while boosting the ability to identify true associations in the binary component of the model. For the count part of the model, in some scenarios the the univariate method had higher power than the multivariate approach. This higher power was at a cost of a highly inflated false discovery rate not observed with the proposed multivariate method. We applied the approach to oral microbiome data from the Pediatric HIV/AIDS Cohort Oral Health Study and identified five species (of 44) associated with HIV infection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا