ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Semiparametric Multivariate Density Deconvolution

191   0   0.0 ( 0 )
 نشر من قبل Abhra Sarkar
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contaminated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls.



قيم البحث

اقرأ أيضاً

We consider the problem of multivariate density deconvolution where the distribution of a random vector needs to be estimated from replicates contaminated with conditionally heteroscedastic measurement errors. We propose a conceptually straightforwar d yet fundamentally novel and highly robust approach to multivariate density deconvolution by stochastically rotating the replicates toward the corresponding true latent values. We also address the additionally significantly challenging problem of accommodating conditionally heteroscedastic measurement errors in this newly introduced framework. We take a Bayesian route to estimation and inference, implemented via an efficient Markov chain Monte Carlo algorithm, appropriately accommodating uncertainty in all aspects of our analysis. Asymptotic convergence guarantees for the method are also established. We illustrate the methods empirical efficacy through simulation experiments and its practical utility in estimating the long-term joint average intakes of different dietary components from their measurement error contaminated 24-hour dietary recalls.
This article presents an approach to Bayesian semiparametric inference for Gaussian multivariate response regression. We are motivated by various small and medium dimensional problems from the physical and social sciences. The statistical challenges revolve around dealing with the unknown mean and variance functions and in particular, the correlation matrix. To tackle these problems, we have developed priors over the smooth functions and a Markov chain Monte Carlo algorithm for inference and model selection. Specifically, Dirichlet process mixtures of Gaussian distributions are used as the basis for a cluster-inducing prior over the elements of the correlation matrix. The smooth, multidimensional means and variances are represented using radial basis function expansions. The complexity of the model, in terms of variable selection and smoothness, is then controlled by spike-slab priors. A simulation study is presented, demonstrating performance as the response dimension increases. Finally, the model is fit to a number of real world datasets. An R package, scripts for replicating synthetic and real data examples, and a detailed description of the MCMC sampler are available in the supplementary materials online.
The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decom positions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula mod el is utilized to capture the dependence structure of $F_{true}$. As a result, a Bayesian multivariate normality test is developed by combining the relative belief ratio and the Energy distance. Several interesting theoretical results of the approach are derived. Finally, through several simulated examples and a real data set, the proposed approach reveals excellent performance.
We consider nonparametric measurement error density deconvolution subject to heteroscedastic measurement errors as well as symmetry about zero and shape constraints, in particular unimodality. The problem is motivated by applications where the observ ed data are estimated effect sizes from regressions on multiple factors, where the target is the distribution of the true effect sizes. We exploit the fact that any symmetric and unimodal density can be expressed as a mixture of symmetric uniform densities, and model the mixing density in a new way using a Dirichlet process location-mixture of Gamma distributions. We do the computations within a Bayesian context, describe a simple scalable implementation that is linear in the sample size, and show that the estimate of the unknown target density is consistent. Within our application context of regression effect sizes, the target density is likely to have a large probability near zero (the near null effects) coupled with a heavy-tailed distribution (the actual effects). Simulations show that unlike standard deconvolution methods, our Constrained Bayesian Deconvolution method does a much better job of reconstruction of the target density. Applications to a genome-wise association study (GWAS) and microarray data reveal similar results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا