ترغب بنشر مسار تعليمي؟ اضغط هنا

Advances and Open Problems in Federated Learning

399   0   0.0 ( 0 )
 نشر من قبل Peter Kairouz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.



قيم البحث

اقرأ أيضاً

Federated learning plays an important role in the process of smart cities. With the development of big data and artificial intelligence, there is a problem of data privacy protection in this process. Federated learning is capable of solving this prob lem. This paper starts with the current developments of federated learning and its applications in various fields. We conduct a comprehensive investigation. This paper summarize the latest research on the application of federated learning in various fields of smart cities. In-depth understanding of the current development of federated learning from the Internet of Things, transportation, communications, finance, medical and other fields. Before that, we introduce the background, definition and key technologies of federated learning. Further more, we review the key technologies and the latest results. Finally, we discuss the future applications and research directions of federated learning in smart cities.
137 - Ruixuan Liu , Yang Cao , Hong Chen 2020
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users raw data. To ensure users privacy, differentially private federated learning has been intensively studied. The existi ng works are mainly based on the textit{curator model} or textit{local model} of differential privacy. However, both of them have pros and cons. The curator model allows greater accuracy but requires a trusted analyzer. In the local model where users randomize local data before sending them to the analyzer, a trusted analyzer is not required but the accuracy is limited. In this work, by leveraging the textit{privacy amplification} effect in the recently proposed shuffle model of differential privacy, we achieve the best of two worlds, i.e., accuracy in the curator model and strong privacy without relying on any trusted party. We first propose an FL framework in the shuffle model and a simple protocol (SS-Simple) extended from existing work. We find that SS-Simple only provides an insufficient privacy amplification effect in FL since the dimension of the model parameter is quite large. To solve this challenge, we propose an enhanced protocol (SS-Double) to increase the privacy amplification effect by subsampling. Furthermore, for boosting the utility when the model size is greater than the user population, we propose an advanced protocol (SS-Topk) with gradient sparsification techniques. We also provide theoretical analysis and numerical evaluations of the privacy amplification of the proposed protocols. Experiments on real-world dataset validate that SS-Topk improves the testing accuracy by 60.7% than the local model based FL.
315 - Yiwen Guo , Changshui Zhang 2021
This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the com munity over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.
Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients (edge devices). FL offers default client privacy by allowing clients to keep their sensitive data on local device s and to only share local training parameter updates with the federated server. However, recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks and intrude the client privacy regarding its training data. In this paper, we present a principled framework for evaluating and comparing different forms of client privacy leakage attacks. We first provide formal and experimental analysis to show how adversaries can reconstruct the private local training data by simply analyzing the shared parameter update from local training (e.g., local gradient or weight update vector). We then analyze how different hyperparameter configurations in federated learning and different settings of the attack algorithm may impact on both attack effectiveness and attack cost. Our framework also measures, evaluates, and analyzes the effectiveness of client privacy leakage attacks under different gradient compression ratios when using communication efficient FL protocols. Our experiments also include some preliminary mitigation strategies to highlight the importance of providing a systematic attack evaluation framework towards an in-depth understanding of the various forms of client privacy leakage threats in federated learning and developing theoretical foundations for attack mitigation.
141 - Amit Portnoy , Yoav Tirosh , 2020
Federated Learning (FL) is a distributed machine learning paradigm where data is distributed among clients who collaboratively train a model in a computation process coordinated by a central server. By assigning a weight to each client based on the p roportion of data instances it possesses, the rate of convergence to an accurate joint model can be greatly accelerated. Some previous works studied FL in a Byzantine setting, in which a fraction of the clients may send arbitrary or even malicious information regarding their model. However, these works either ignore the issue of data unbalancedness altogether or assume that client weights are apriori known to the server, whereas, in practice, it is likely that weights will be reported to the server by the clients themselves and therefore cannot be relied upon. We address this issue for the first time by proposing a practical weight-truncation-based preprocessing method and demonstrating empirically that it is able to strike a good balance between model quality and Byzantine robustness. We also establish analytically that our method can be applied to a randomly selected sample of client weights.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا