ﻻ يوجد ملخص باللغة العربية
In this paper, we develop a sharp interface tumor growth model to study the effect of the tumor microenvironment using a complex far-field geometry that mimics a heterogeneous distribution of vasculature. Together with different nutrient uptake rates inside and outside the tumor, this introduces variability in spatial diffusion gradients. Linear stability analysis suggests that the uptake rate in the tumor microenvironment, together with chemotaxis, may induce unstable growth, especially when the nutrient gradients are large. We investigate the fully nonlinear dynamics using a spectrally accurate boundary integral method. Our nonlinear simulations reveal that vascular heterogeneity plays an important role in the development of morphological instabilities that range from fingering and chain-like morphologies to compact, plate-like shapes in two-dimensions.
In this paper, we develop a sharp interface tumor growth model to study the effect of both the intratumoral structure using a controlled necrotic core and the extratumoral nutrient supply from vasculature on tumor morphology. We first show that our m
We present a general -- i.e., independent of the underlying equation -- registration procedure for parameterized model order reduction. Given the spatial domain $Omega subset mathbb{R}^2$ and the manifold $mathcal{M}= { u_{mu} : mu in mathcal{P} }$ a
The inverse problem we consider is to reconstruct the location and shape of buried obstacles in the lower half-space of an unbounded two-layered medium in two dimensions from phaseless far-field data. A main difficulty of this problem is that the tra
Radial basis function generated finite difference (RBF-FD) methods for PDEs require a set of interpolation points which conform to the computational domain $Omega$. One of the requirements leading to approximation robustness is to place the interpola
In this paper, we propose and analyze a first-order and a second-order time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. The proposed schemes are based on an auxiliary variable approach for the Allen-Cahn equation