ترغب بنشر مسار تعليمي؟ اضغط هنا

Models of quantum complexity growth

336   0   0.0 ( 0 )
 نشر من قبل Nick Hunter-Jones
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of quantum complexity has far-reaching implications spanning theoretical computer science, quantum many-body physics, and high energy physics. The quantum complexity of a unitary transformation or quantum state is defined as the size of the shortest quantum computation that executes the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state governed by a chaotic many-body Hamiltonian grows linearly with time for a time that is exponential in the system size; however, because it is hard to rule out a short-cut that improves the efficiency of a computation, it is notoriously difficult to derive lower bounds on quantum complexity for particular unitaries or states without making additional assumptions. To go further, one may study more generic models of complexity growth. We provide a rigorous connection between complexity growth and unitary $k$-designs, ensembles which capture the randomness of the unitary group. This connection allows us to leverage existing results about design growth to draw conclusions about the growth of complexity. We prove that local random quantum circuits generate unitary transformations whose complexity grows linearly for a long time, mirroring the behavior one expects in chaotic quantum systems and verifying conjectures by Brown and Susskind. Moreover, our results apply under a strong definition of quantum complexity based on optimal distinguishing measurements.



قيم البحث

اقرأ أيضاً

93 - Dmitry S. Ageev 2019
This is the contribution to Quarks2018 conference proceedings. This contribution is devoted to the holographic description of chaos and quantum complexity in the strongly interacting systems out of equilibrium. In the first part of the talk we presen t different holographic complexity proposals in out-of-equilibrium CFT following the local perturbation. The second part is devoted to the chaotic growth of the local operator size at a finite chemical potential. There are numerous results stating that the chemical potential may lead to the chaos disappearance, and we confirm these results from holographic viewpoint.
130 - Dmitry S. Ageev 2019
This paper is devoted to the study of the evolution of holographic complexity after a local perturbation of the system at finite temperature. We calculate the complexity using both the complexity=action(CA) and the complexity=volume(CA) conjectures a nd find that the CV complexity of the total state shows the unbounded late time linear growth. The CA computation shows linear growth with fast saturation to a constant value. We estimate the CV and CA complexity linear growth coefficients and show, that finite temperature leads to violation of the Lloyd bound for CA complexity. Also it is shown that for composite system after the local quench the state with minimal entanglement may correspond to the maximal complexity.
In this work, we formulate a path-integral optimization for two dimensional conformal field theories perturbed by relevant operators. We present several evidences how this optimization mechanism works, based on calculations in free field theories as well as general arguments of RG flows in field theories. Our optimization is performed by minimizing the path-integral complexity functional that depends on the metric and also on the relevant couplings. Then, we compute the optimal metric perturbatively and find that it agrees with the time slice of the hyperbolic metric perturbed by a scalar field in the AdS/CFT correspondence. Last but not the least, we estimate contributions to complexity from relevant perturbations.
We compute the circuit complexity of scalar curvature perturbations on FLRW cosmological backgrounds with fixed equation of state $w$ using the language of squeezed vacuum states. Backgrounds that are accelerating and expanding, or decelerating and c ontracting, exhibit features consistent with chaotic behavior, including linearly growing complexity. Remarkably, we uncover a bound on the growth of complexity for both expanding and contracting backgrounds $lambda leq sqrt{2} |H|$, similar to other bounds proposed independently in the literature. The bound is saturated for expanding backgrounds with an equation of state more negative than $w = -5/3$, and for contracting backgrounds with an equation of state larger than $w = 1$. For expanding backgrounds that preserve the null energy condition, de Sitter space has the largest rate of growth of complexity (identified as the Lyapunov exponent), and we find a scrambling time that is similar to other estimates up to order one factors.
We show that the Hilbert space spanned by a continuously parametrized wavefunction family---i.e., a quantum state manifold---is dominated by a subspace, onto which all member states have close to unity projection weight. Its characteristic dimensiona lity $D_P$ is much smaller than the full Hilbert space dimension, and is equivalent to a statistical complexity measure $e^{S_2}$, where $S_2$ is the $2^{nd}$ Renyi entropy of the manifold. In the thermodynamic limit, $D_P$ closely approximates the quantum geometric volume of the manifold under the Fubini-Study metric, revealing an intriguing connection between information and geometry. This connection persists in compact manifolds such as a twisted boundary phase, where the corresponding geometric circumference is lower bounded by a term proportional to its topological index, reminiscent of entanglement entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا