ﻻ يوجد ملخص باللغة العربية
The effect of disorder is studied on the field-induced quantum phase transition in the frustrated spin-ladder compound H8C4SO2Cu2(Cl[1-x]Brx)4 using bulk magnetic and thermodynamic measurements. The parent material (x=0) is a quantum spin liquid, which in applied fields is known to form a magnon condensate with long-range helimagnetic order. We show that bond randomness introduced by a chemical substitution on the non-magnetic halogene site destroys this phase transition at very low concentrations, already for x=0.01. The extreme fragility of the magnon condensate is attributed to random frustration in the incommensurate state.
Magnetization plateaux emerging in quantum spin systems due to spontaneously breaking of translational symmetry have been reported both theoretically and experimentally. The broken symmetry can induce reconstruction of elementary excitations such as
We measure by inelastic neutron scattering the spin excitation spectra as a function of applied magnetic field in the quantum spin-ladder material (C5H12N)2CuBr4. Discrete magnon modes at low fields in the quantum disordered phase and at high fields
The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration
We have used a combination of neutron resonant spin-echo and triple-axis spectroscopies to determine the energy and linewidth of the magnon resonance in IPA-Cu(Cl$_{0.95}$Br$_{0.05}$)$_3$, a model spin-1/2 ladder antiferromagnet where Br substitution
In the spin ladder compound BiCu$_2$PO$_6$ there exists a decisive dynamics of spin excitations that we classify and characterize using inelastic light scattering. We observe low-energy singlets and a broad triplon continuum extending from 36 cm$^{-1