ترغب بنشر مسار تعليمي؟ اضغط هنا

Carving out OPE space and precise $O(2)$ model critical exponents

83   0   0.0 ( 0 )
 نشر من قبل David Poland
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop new tools for isolating CFTs using the numerical bootstrap. A cutting surface algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite programming, this enables bootstrap studies of much larger systems of correlation functions than was previously practical. We apply these methods to correlation functions of charge-0, 1, and 2 scalars in the 3d $O(2)$ model, computing new precise values for scaling dimensions and OPE coefficients in this theory. Our new determinations of scaling dimensions are consistent with and improve upon existing Monte Carlo simulations, sharpening the existing decades-old $8sigma$ discrepancy between theory and experiment.



قيم البحث

اقرأ أيضاً

A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the two-loop $epsilon$-expansion, two-loop fixed-dimension renormalization group, and non-perturbative functional renormalization group. An interacting, real, infrared-stable fixed point is found near six dimensions, and the corresponding anomalous dimensions are computed to the second order in small parameter $epsilon=6-d$. Two-loop epsilon-expansion indicates, however, that the second-order corrections may destabilize the fixed point at some critical $epsilon_c <1$. A more detailed analysis within all three computational schemes suggests that the interacting, infrared-stable fixed point found previously collides with another fixed point and becomes complex when the dimension is lowered from six towards five. Such a result would conform to the expectation of triviality of $O(2)$ field theories above four dimensions.
We compute critical exponents of O(N) models in fractal dimensions between two and four, and for continuos values of the number of field components N, in this way completing the RG classification of universality classes for these models. In d=2 the N -dependence of the correlation length critical exponent gives us the last piece of information needed to establish a RG derivation of the Mermin-Wagner theorem. We also report critical exponents for multi-critical universality classes in the cases N>1 and N=0. Finally, in the large-N limit our critical exponents correctly approach those of the spherical model, allowing us to set N~100 as threshold for the quantitative validity of leading order large-N estimates.
We introduce a new numerical algorithm based on semidefinite programming to efficiently compute bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. Using our algorithm, we dramat ically improve previous bounds on a number of CFT quantities, particularly for theories with global symmetries. In the case of SO(4) or SU(2) symmetry, our bounds severely constrain models of conformal technicolor. In N=1 superconformal theories, we place strong bounds on dim(Phi*Phi), where Phi is a chiral operator. These bounds asymptote to the line dim(Phi*Phi) <= 2 dim(Phi) near dim(Phi) ~ 1, forbidding positive anomalous dimensions in this region. We also place novel upper and lower bounds on OPE coefficients of protected operators in the Phi x Phi OPE. Finally, we find examples of lower bounds on central charges and flavor current two-point functions that scale with the size of global symmetry representations. In the case of N=1 theories with an SU(N) flavor symmetry, our bounds on current two-point functions lie within an O(1) factor of the values realized in supersymmetric QCD in the conformal window.
We study the spectrum and OPE coefficients of the three-dimensional critical O(2) model, using four-point functions of the leading scalars with charges 0, 1, and 2 ($s$, $phi$, and $t$). We obtain numerical predictions for low-twist OPE data in sever al charge sectors using the extremal functional method. We compare the results to analytical estimates using the Lorentzian inversion formula and a small amount of numerical input. We find agreement between the analytic and numerical predictions. We also give evidence that certain scalar operators lie on double-twist Regge trajectories and obtain estimates for the leading Regge intercepts of the O(2) model.
We investigate in detail the phase diagram of the Abelian-Higgs model in one spatial dimension and time (1+1D) on a lattice. We identify a line of first order phase transitions separating the Higgs region from the confined one. This line terminates i n a quantum critical point above which the two regions are connected by a smooth crossover. We analyze the critical point and find compelling evidences for its description as the product of two non-interacting systems, a massless free fermion and a massless free boson. However, we find also some surprizing results that cannot be explained by our simple picture, suggesting this newly discovered critical point to be an unusual one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا