ﻻ يوجد ملخص باللغة العربية
We compute critical exponents of O(N) models in fractal dimensions between two and four, and for continuos values of the number of field components N, in this way completing the RG classification of universality classes for these models. In d=2 the N-dependence of the correlation length critical exponent gives us the last piece of information needed to establish a RG derivation of the Mermin-Wagner theorem. We also report critical exponents for multi-critical universality classes in the cases N>1 and N=0. Finally, in the large-N limit our critical exponents correctly approach those of the spherical model, allowing us to set N~100 as threshold for the quantitative validity of leading order large-N estimates.
We develop new tools for isolating CFTs using the numerical bootstrap. A cutting surface algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite p
We apply the methods of modern analytic bootstrap to the critical $O(N)$ model in a $1/N$ expansion. At infinite $N$ the model possesses higher spin symmetry which is weakly broken as we turn on $1/N$. By studying consistency conditions for the corre
We study the conformal bootstrap for 3D CFTs with O(N) global symmetry. We obtain rigorous upper bounds on the scaling dimensions of the first O(N) singlet and symmetric tensor operators appearing in the $phi_i times phi_j$ OPE, where $phi_i$ is a fu
A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the
We use the critical point large $N$ formalism to calculate the critical exponents corresponding to the fermion mass operator and flavour non-singlet fermion bilinear operator in the universality class of Quantum Electrodynamics (QED) coupled to the G