ترغب بنشر مسار تعليمي؟ اضغط هنا

Why Should we Combine Training and Post-Training Methods for Out-of-Distribution Detection?

110   0   0.0 ( 0 )
 نشر من قبل Aristotelis Papadopoulos
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks are known to achieve superior results in classification tasks. However, it has been recently shown that they are incapable to detect examples that are generated by a distribution which is different than the one they have been trained on since they are making overconfident prediction for Out-Of-Distribution (OOD) examples. OOD detection has attracted a lot of attention recently. In this paper, we review some of the most seminal recent algorithms in the OOD detection field, we divide those methods into training and post-training and we experimentally show how the combination of the former with the latter can achieve state-of-the-art results in the OOD detection task.

قيم البحث

اقرأ أيضاً

Generative adversarial training (GAT) is a recently introduced adversarial defense method. Previous works have focused on empirical evaluations of its application to training robust predictive models. In this paper we focus on theoretical understandi ng of the GAT method and extending its application to generative modeling and out-of-distribution detection. We analyze the optimal solutions of the maximin formulation employed by the GAT objective, and make a comparative analysis of the minimax formulation employed by GANs. We use theoretical analysis and 2D simulations to understand the convergence property of the training algorithm. Based on these results, we develop an incremental generative training algorithm, and conduct comprehensive evaluations of the algorithms application to image generation and adversarial out-of-distribution detection. Our results suggest that generative adversarial training is a promising new direction for the above applications.
Pre-training, where models are trained on an auxiliary objective with abundant data before being fine-tuned on data from the downstream task, is now the dominant paradigm in NLP. In general, the pre-training step relies on little to no direct knowled ge of the task on which the model will be fine-tuned, even when the end-task is known in advance. Our work challenges this status-quo of end-task agnostic pre-training. First, on three different low-resource NLP tasks from two domains, we demonstrate that multi-tasking the end-task and auxiliary objectives results in significantly better downstream task performance than the widely-used task-agnostic continued pre-training paradigm of Gururangan et al. (2020). We next introduce an online meta-learning algorithm that learns a set of multi-task weights to better balance among our multiple auxiliary objectives, achieving further improvements on end task performance and data efficiency.
Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. Additionally, we show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq
Deep neural networks have achieved great success in classification tasks during the last years. However, one major problem to the path towards artificial intelligence is the inability of neural networks to accurately detect samples from novel class d istributions and therefore, most of the existent classification algorithms assume that all classes are known prior to the training stage. In this work, we propose a methodology for training a neural network that allows it to efficiently detect out-of-distribution (OOD) examples without compromising much of its classification accuracy on the test examples from known classes. We propose a novel loss function that gives rise to a novel method, Outlier Exposure with Confidence Control (OECC), which achieves superior results in OOD detection with OE both on image and text classification tasks without requiring access to OOD samples. Additionally, we experimentally show that the combination of OECC with state-of-the-art post-training OOD detection methods, like the Mahalanobis Detector (MD) and the Gramian Matrices (GM) methods, further improves their performance in the OOD detection task, demonstrating the potential of combining training and post-training methods for OOD detection.
We consider the post-training quantization problem, which discretizes the weights of pre-trained deep neural networks without re-training the model. We propose multipoint quantization, a quantization method that approximates a full-precision weight v ector using a linear combination of multiple vectors of low-bit numbers; this is in contrast to typical quantization methods that approximate each weight using a single low precision number. Computationally, we construct the multipoint quantization with an efficient greedy selection procedure, and adaptively decides the number of low precision points on each quantized weight vector based on the error of its output. This allows us to achieve higher precision levels for important weights that greatly influence the outputs, yielding an effect of mixed precision but without physical mixed precision implementations (which requires specialized hardware accelerators). Empirically, our method can be implemented by common operands, bringing almost no memory and computation overhead. We show that our method outperforms a range of state-of-the-art methods on ImageNet classification and it can be generalized to more challenging tasks like PASCAL VOC object detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا