ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic effective charge model of a multi-electron atom

145   0   0.0 ( 0 )
 نشر من قبل Oleg Skoromnik
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A relativistic version of the effective charge model for computation of observable characteristics of multi-electron atoms and ions is developed. A complete and orthogonal Dirac hydrogen basis set, depending on one parameter -- effective nuclear charge $Z^{*}$ -- identical for all single-electron wave functions of a given atom or ion, is employed for the construction of the secondary-quantized representation. The effective charge is uniquely determined by the charge of the nucleus and a set of electron occupation numbers for a given state. We thoroughly study the accuracy of the leading-order approximation for the total binding energy and demonstrate that it is independent of the number of electrons of a multi-electron atom. In addition, it is shown that the fully analytical leading-order approximation is especially suited for the description of highly charged ions since our wave functions are almost coincident with the Dirac-Hartree-Fock ones for the complete spectrum. Finally, we evaluate various atomic characteristics, such as scattering factors and photoionization cross-sections, and thus envisage that the effective charge model can replace other models of comparable complexity, such as the Thomas-Fermi-Dirac model for all applications where it is still utilized.

قيم البحث

اقرأ أيضاً

A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completen ess allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach.
We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 8 2%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single ion source.
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space. Because multi-loop interferometers require multiple reflections, imperfections of the matter-wave mirrors crea te spurious paths that scramble the signal of interest. Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates. We experimentally study the recombination condition of the spurious matter waves, which is quantitatively supported by a model accounting for the coherence properties of the atomic source. We finally demonstrate the effectiveness of the method in building a cold-atom gyroscope with a single-shot acceleration sensitivity suppressed by a factor of at least 50. Our study will impact the design of multi-loop atom interferometers that measure a single inertial quantity.
We demonstrate the production of high density cold atom samples (2e14 atoms/cc) in a simple optical lattice formed with YAG light that is diffracted from a holographic phase plate. A loading protocol is described that results in 10,000 atoms per latt ice site. Rapid free evaporation leads to phase space densities of 1/150 within 50 msec. The resulting small, high density atomic clouds are very attractive for a number of experiments, including ultracold Rydberg atom physics.
We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا