ﻻ يوجد ملخص باللغة العربية
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space. Because multi-loop interferometers require multiple reflections, imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest. Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates. We experimentally study the recombination condition of the spurious matter waves, which is quantitatively supported by a model accounting for the coherence properties of the atomic source. We finally demonstrate the effectiveness of the method in building a cold-atom gyroscope with a single-shot acceleration sensitivity suppressed by a factor of at least 50. Our study will impact the design of multi-loop atom interferometers that measure a single inertial quantity.
Sensitive and accurate rotation sensing is a critical requirement for applications such as inertial navigation [1], north-finding [2], geophysical analysis [3], and tests of general relativity [4]. One effective technique used for rotation sensing is
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers,
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a li
Correlating the signals from simultaneous atom interferometers has enabled some of the most precise determinations of fundamental constants. Here, we show that multiple interferometers with strategically chosen initial conditions (offset simultaneous