ﻻ يوجد ملخص باللغة العربية
The IETF 6TiSCH working group fosters the adaptation of IPv6-based protocols into Internet of Things by introducing the 6TiSCH Operation Sublayer (6top). The 6TiSCH architecture integrates the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) with IPv6. IEEE 802.15.4e TSCH defines only the communication between nodes through a schedule but it does not specify how the resources are allocated for communication between the nodes in 6TiSCH networks. We propose a distributed algorithm for bandwidth allocation, called Local Voting, that adapts the schedule to the network conditions. The algorithm tries to equalize the link load (defined as the ratio of the queue length plus the new packet arrivals, over the number of allocated cells) through cell reallocation by calculating the number of cells to be added or released by 6top. Simulation results show that equalizing the load throughout 6TiSCH network provides better fairness in terms of load, reduces the queue sizes and packets reach the root faster compared to representative algorithms from the literature. Local Voting combines good delay performance and energy efficiency that are crucial features for Industrial Internet-of-Things applications.
An efficient and fair node scheduling is a big challenge in multihop wireless networks. In this work, we propose a distributed node scheduling algorithm, called Local Voting. The idea comes from the finding that the shortest delivery time or delay is
Crowdsourced live video streaming (livecast) services such as Facebook Live, YouNow, Douyu and Twitch are gaining more momentum recently. Allocating the limited resources in a cost-effective manner while maximizing the Quality of Service (QoS) throug
Control of multihop Wireless networks in a distributed manner while providing end-to-end delay requirements for different flows, is a challenging problem. Using the notions of Draining Time and Discrete Review from the theory of fluid limits of queue
We present an algorithm which computes a planar 2-spanner from an Unit Disk Graph when the node density is sufficient. The communication complexity in terms of number of nodes identifier sent by the algorithm is $6n$, while the computational complexi
Network slicing has been considered as one of the key enablers for 5G to support diversified services and application scenarios. This paper studies the distributed network slicing utilizing both the spectrum resource offered by communication network