ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive vs. Curated Word Embeddings for Low-Resourced Languages. The Case of Yor`uba and Twi

60   0   0.0 ( 0 )
 نشر من قبل Cristina Espa\\~na-Bonet
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor`uba and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor`uba and Twi. As output of the work, we provide corpora, embeddings and the test suits for both languages.



قيم البحث

اقرأ أيضاً

The current dominance of deep neural networks in natural language processing is based on contextual embeddings such as ELMo, BERT, and BERT derivatives. Most existing work focuses on English; in contrast, we present here the first multilingual empiri cal comparison of two ELMo and several monolingual and multilingual BERT models using 14 tasks in nine languages. In monolingual settings, our analysis shows that monolingual BERT models generally dominate, with a few exceptions such as the dependency parsing task, where they are not competitive with ELMo models trained on large corpora. In cross-lingual settings, BERT models trained on only a few languages mostly do best, closely followed by massively multilingual BERT models.
In this paper, we advance the current state-of-the-art method for debiasing monolingual word embeddings so as to generalize well in a multilingual setting. We consider different methods to quantify bias and different debiasing approaches for monoling ual as well as multilingual settings. We demonstrate the significance of our bias-mitigation approach on downstream NLP applications. Our proposed methods establish the state-of-the-art performance for debiasing multilingual embeddings for three Indian languages - Hindi, Bengali, and Telugu in addition to English. We believe that our work will open up new opportunities in building unbiased downstream NLP applications that are inherently dependent on the quality of the word embeddings used.
A large number of significant assets are available online in English, which is frequently translated into native languages to ease the information sharing among local people who are not much familiar with English. However, manual translation is a ver y tedious, costly, and time-taking process. To this end, machine translation is an effective approach to convert text to a different language without any human involvement. Neural machine translation (NMT) is one of the most proficient translation techniques amongst all existing machine translation systems. In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam. We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system that overcomes the OOV (Out Of Vocabulary) problem for low resourced morphological rich Indian languages which do not have much translation available online. We also collected corpus from different sources, addressed the issues with these publicly available data and refined them for further uses. We used the BLEU score for evaluating our system performance. Experimental results and survey confirmed that our proposed translator (24.34 and 9.78 BLEU score) outperforms Google translator (9.40 and 5.94 BLEU score) respectively.
Massively multilingual machine translation (MT) has shown impressive capabilities, including zero and few-shot translation between low-resource language pairs. However, these models are often evaluated on high-resource languages with the assumption t hat they generalize to low-resource ones. The difficulty of evaluating MT models on low-resource pairs is often due to lack of standardized evaluation datasets. In this paper, we present MENYO-20k, the first multi-domain parallel corpus with a special focus on clean orthography for Yor`uba--English with standardized train-test splits for benchmarking. We provide several neural MT benchmarks and compare them to the performance of popular pre-trained (massively multilingual) MT models both for the heterogeneous test set and its subdomains. Since these pre-trained models use huge amounts of data with uncertain quality, we also analyze the effect of diacritics, a major characteristic of Yor`uba, in the training data. We investigate how and when this training condition affects the final quality and intelligibility of a translation. Our models outperform massively multilingual models such as Google ($+8.7$ BLEU) and Facebook M2M ($+9.1$ BLEU) when translating to Yor`uba, setting a high quality benchmark for future research.
We propose a new approach for learning contextualised cross-lingual word embeddings based only on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM-based encoder-decoder model that performs bi directional translation and reconstruction of the input sentence. Through sharing model parameters among different languages, our model jointly trains the word embeddings in a common multilingual space. We also propose a simple method to combine word and subword embeddings to make use of orthographic similarities across different languages. We base our experiments on real-world data from endangered languages, namely Yongning Na, Shipibo-Konibo and Griko. Our experiments on bilingual lexicon induction and word alignment tasks show that our model outperforms existing methods by a large margin for most language pairs. These results demonstrate that, contrary to common belief, an encoder-decoder translation model is beneficial for learning cross-lingual representations, even in extremely low-resource scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا