ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust energy selective tunneling readout of singlet triplet qubits under large magnetic field gradient

57   0   0.0 ( 0 )
 نشر من قبل Wonjin Jang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast and high-fidelity quantum state detection is essential for building robust spin-based quantum information processing platforms in semiconductors. The Pauli spin blockade (PSB)-based spin-to-charge conversion and its variants are widely used for the spin state discrimination of two-electron singlet-triplet (ST$_0$) qubits; however, the single-shot measurement fidelity is limited by either the low signal contrast, or the short lifetime of the triplet state at the PSB energy detuning, especially due to strong mixing with singlet states at large magnetic field gradients. Ultimately, the limited single-shot measurement fidelity leads to low visibility of quantum operations. Here, we demonstrate an alternative method to achieve spin-to-charge conversion of ST$_0$ qubit states using energy selective tunneling between doubly occupied quantum dots (QDs) and electron reservoirs. We demonstrate a single-shot measurement fidelity of 90% and an S-T$_0$ oscillation visibility of 81% at a field gradient of 100 mT (~ 500 $MHzcdot h cdot(g^{*}cdot mu_B)^{-1}$); this allows single-shot readout with full electron charge signal contrast and, at the same time, long and tunable measurement time with negligible effect of relaxation even at strong magnetic field gradients. Using an rf-sensor positioned opposite to the QD array, we apply this method to two ST$_0$ qubits and show high-visibility readout of two individual single-qubit gate operations is possible with a single rf single-electron transistor sensor. We expect our measurement scheme for two-electron spin states can be applied to various hosting materials and provides a simplified and complementary route for multiple qubit state detection with high accuracy in QD-based quantum computing platforms.

قيم البحث

اقرأ أيضاً

Charge noise is the main hurdle preventing high-fidelity operation, in particular that of two-qubit gates, of semiconductor-quantum-dot-based spin qubits. While certain sweet spots where charge noise is substantially suppressed have been demonstrated in several types of spin qubits, the existence of one for coupled singlet-triplet qubits is unclear. We theoretically demonstrate, using full configuration-interaction calculations, that a range of nearly sweet spots appear in the coupled singlet-triplet qubit system when a strong enough magnetic field is applied externally. We further demonstrate that ramping to and from the judiciously chosen nearly sweet spot using sequences based on the shortcut to adiabaticity offers maximal gate fidelities under charge noise and phonon-induced decoherence. These results should facilitate realization of high-fidelity two-qubit gates in singlet-triplet qubit systems.
We analyze a readout scheme for Majorana qubits based on dispersive coupling to a resonator. We consider two variants of Majorana qubits: the Majorana transmon and the Majorana box qubit. In both cases, the qubit-resonator interaction can produce siz eable dispersive shifts in the MHz range for reasonable system parameters, allowing for submicrosecond readout with high fidelity. For Majorana transmons, the light-matter interaction used for readout manifestly conserves Majorana parity, which leads to a notion of quantum nondemolition (QND) readout that is stronger than for conventional charge qubits. In contrast, Majorana box qubits only recover an approximately QND readout mechanism in the dispersive limit where the resonator detuning is large. We also compare dispersive readout to longitudinal readout for the Majorana box qubit. We show that the latter gives faster and higher fidelity readout for reasonable parameters, while having the additional advantage of being manifestly QND, and so may prove to be a better readout mechanism for these systems.
We use the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of $^{13}$C isotopes, we f irst demonstrate high fidelity initialization and single-shot readout of an individual $^{13}$C nuclear spin. By including the intrinsic $^{14}$N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.
Using single-shot charge detection in a GaAs double quantum dot, we investigate spin relaxation time T_1 and readout visibility of a two-electron singlet-triplet qubit following single-electron dynamic nuclear polarization (DNP). For magnetic fields up to 2 T, the DNP cycle is in all cases found to increase Overhauser field gradients, which in turn decrease T_1 and consequently reduce readout visibility. This effect was previously attributed to a suppression of singlet-triplet dephasing under a similar DNP cycle. A model describing relaxation after singlet-triplet mixing agrees well with experiment. Effects of pulse bandwidth on visibility are also investigated.
Recent work on Ising-coupled double-quantum-dot spin qubits in GaAs with voltage-controlled exchange interaction has shown improved two-qubit gate fidelities from the application of oscillating exchange along with a strong magnetic field gradient bet ween adjacent dots. By examining how noise propagates in the time-evolution operator of the system, we find an optimal set of parameters that provide passive stroboscopic circumvention of errors in two-qubit gates to first order. We predict over 99% two-qubit gate fidelities in the presence of quasistatic and 1/$textit{f}$ noise, which is an order of magnitude improvement over the typical unoptimized implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا